To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a novel recursive procedure to a neural-network-based subgrid-scale (NN-based SGS) model for large eddy simulation (LES) of high-Reynolds-number turbulent flow. This process is designed to allow an SGS model to be applicable to a hierarchy of different grid sizes without requiring expensive filtered direct numerical simulation (DNS) data: (1) train an NN-based SGS model with filtered DNS data at a low Reynolds number; (2) apply the trained SGS model to LES at a higher Reynolds number; (3) update this SGS model with training data augmented with filtered LES (fLES) data, accommodating coarser filter size; (4) apply the updated NN to LES at a further higher Reynolds number; (5) go back to Step (3) until a target (very coarse) filter size divided by the Kolmogorov length scale is reached. We also construct an NN-based SGS model using a dual NN architecture whose outputs are the SGS normal stresses for one NN and the SGS shear stresses for the other NN. The input is composed of the velocity gradient tensor and grid size. Furthermore, for the application of an NN-based SGS model trained with one flow to another flow, we modify the NN by eliminating bias and introducing a leaky rectified linear unit function as an activation function. The present recursive SGS model is applied to forced homogeneous isotropic turbulence (FHIT) and successfully predicts FHIT at high Reynolds numbers. The present model trained from FHIT is also applied to decaying homogeneous isotropic turbulence and shows an excellent prediction performance.
To investigate the flame acceleration to detonation in 2.0 and 0.5 mm planar glass combustion chambers, the experiments have been conducted utilising ethylene/oxygen mixtures at atmospheric pressure and temperature. The high-speed camera has been used to record the revolution of flame front and pressure inside the combustion chamber. Different equivalence ratios and ignition locations have been considered in the experiments. The results show that the detonation pressure in the 2 mm thick chamber is nearly three times of Chapman-Jouguet pressure, while detonation pressure in the 0.5 mm thick chamber is only 45.7% of the Chapman-Jouguet value at the stoichiometric mixture. This phenomenon is attributed to the larger pressure loss in the thinner chamber during the detonation propagation. As the value of equivalence ratio is 2.2, the detonation cannot be produced in the 2 mm thick chamber, while the detonation can be generated successfully in the 0.5 mm thick chamber. This phenomenon indicates that the deflagration is easily to be accelerated and transformed into the detonation, due to a larger wall friction and reflection. Besides, the micro-obstacle has been added into the combustor can shorten the detonation transition time and reduces the distance of the detonation transition.
There has been no dearth, since Plutarch’s day at least, of erudite theories about what message the E at Apollo’s temple was meant to convey to visitors. Yet no account so far has added up to a truly compelling answer, not for lack of ingenuity, but because the various approaches have tended so strongly towards the sophisticated and artful, rather than the probable. This article will review why the familiar answers are more impressive than convincing, and will propose in their place a much simpler explanation: namely that the E was meant to represent the mysterious itself, reminding pilgrims that they were entering a realm where logos continued to hold sway, to be sure, as the other inscriptions testified, but where the human intellect must leave room for mantic wisdom, and where logical reasoning must be supplemented with contemplation and meditation upon the enigmatic, the hidden, and the ineffable.
We provide scaling relations for the Nusselt number $Nu$ and the friction coefficient $C_{S}$ in sheared Rayleigh–Bénard convection, i.e. in Rayleigh–Bénard flow with Couette- or Poiseuille-type shear forcing, by extending the Grossmann & Lohse (J. Fluid Mech., vol. 407, 2000, pp. 27–56, Phys. Rev. Lett., vol. 86, 2001, pp. 3316–3319, Phys. Rev. E, vol. 66, 2002, 016305, Phys. Fluids, vol. 16, 2004, pp. 4462–4472) theory to sheared thermal convection. The control parameters for these systems are the Rayleigh number $Ra$, the Prandtl number $Pr$ and the Reynolds number $Re_S$ that characterises the strength of the imposed shear. By direct numerical simulations and theoretical considerations, we show that, in turbulent Rayleigh–Bénard convection, the friction coefficients associated with the applied shear and the shear generated by the large-scale convection rolls are both well described by Prandtl's (Ergeb. Aerodyn. Vers. Gött., vol. 4, 1932, pp. 18–29) logarithmic friction law, suggesting some kind of universality between purely shear-driven flows and thermal convection. These scaling relations hold well for $10^6 \leq Ra \leq 10^8$, $0.5 \leq Pr \leq 5.0$, and $0 \leq Re_S \leq 10^4$.
The unsteady flow physics of wind-turbine wakes under dynamic forcing conditions are critical to the modelling and control of wind farms for optimal power density. Unsteady forcing in the streamwise direction may be generated by unsteady inflow conditions in the atmospheric boundary layer, dynamic induction control of the turbine or streamwise surge motions of a floating offshore wind turbine due to floating-platform oscillations. This study seeks to identify the dominant flow mechanisms in unsteady wakes forced by a periodic upstream inflow condition. A theoretical framework for the problem is derived, which describes travelling-wave undulations in the wake radius and streamwise velocity. These dynamics encourage the aggregation of tip vortices into large structures that are advected along in the wake. Flow measurements in the wake of a periodically surging turbine were obtained in an optically accessible towing-tank facility, with an average diameter-based Reynolds number of 300 000 and with surge-velocity amplitudes of up to 40 % of the mean inflow velocity. Qualitative agreement between trends in the measurements and model predictions is observed, supporting the validity of the theoretical analyses. The experiments also demonstrate large enhancements in the recovery of the wake relative to the steady-flow case, with wake-length reductions of up to 46.5 % and improvements in the available power at 10 diameters downstream of up to 15.7 %. These results provide fundamental insights into the dynamics of unsteady wakes and serve as additional evidence that unsteady fluid mechanics can be leveraged to increase the power density of wind farms.
The effects of the evolution of vortices on the aeroacoustics generated by a hovering wing are numerically investigated by using a hybrid method of an immersed boundary–finite difference method for the three-dimensional incompressible flows and a simplified model based on the Ffowcs Williams-Hawkings acoustic analogy. A low-aspect-ratio ($AR=1.5$) rectangular wing at low Reynolds ($Re=1000$) and Mach ($M=0.04$) numbers is investigated. Based on the simplified model, the far-field acoustics is shown to be dominated by the time derivative of the pressure on the wing surface. Results show that vortical structure evolution in the flow fields, which is described by the divergence of the convection term of the incompressible Navier–Stokes equations in a body-fixed reference frame, determines the time derivative of the surface pressure and effectively the far-field acoustics. It dominates over the centrifugal acceleration and Coriolis acceleration terms in determining the time derivative of the surface pressure. The position of the vortex is also found to affect the time derivative of the surface pressure. A scaling analysis reveals that the vortex acoustic source is scaled with the cube of the flapping frequency.
To meet the high-precision positioning requirements for hybrid machining units, this article presents a geometric error modeling and source error identification methodology for a serial–parallel hybrid kinematic machining unit (HKMU) with five axis. A minimal kinematic error modeling of the serial–parallel HKMU is established with screw-based method after elimination of redundant errors. A set of composite error indices is formulated to describe the terminal accuracy distribution characteristics in a quantitative manner. A modified projection method is proposed to determine the actual compensable and noncompensable source errors of the HKMU by identifying such transformable source errors. Based on this, the error compensation and comparison analysis are carried out on the exemplary HKMU to numerically verify the effectiveness of the proposed modified projection method. The geometric error evaluations reveal that the parallel module has a larger impacts on the terminal accuracy of the platform of the HKMU than the serial module. The error compensation results manifest that the modified projection method can find additional compensable source errors and significantly reduce the average and maximum values of geometric errors of the HKMU. Hence, the proposed methodology can be applied to improve the accuracy of kinematic calibration of the compensable source errors and can reduce the difficulty and workload of tolerance design for noncompensable source errors of such serial–parallel hybrid mechanism.
We discuss representations of product systems (of $W^*$-correspondences) over the semigroup $\mathbb{Z}^n_+$ and show that, under certain pureness and Szegö positivity conditions, a completely contractive representation can be dilated to an isometric representation. For $n=1,2$ this is known to hold in general (without assuming the conditions), but for $n\geq 3$, it does not hold in general (as is known for the special case of isometric dilations of a tuple of commuting contractions). Restricting to the case of tuples of commuting contractions, our result reduces to a result of Barik, Das, Haria, and Sarkar (Isometric dilations and von Neumann inequality for a class of tuples in the polydisc. Trans. Amer. Math. Soc. 372 (2019), 1429–1450). Our dilation is explicitly constructed, and we present some applications.
The rapid expansion of digital media platforms and their growing user base in the wireless industry necessitate communication systems to provide information at high speeds with reliable connections. Therefore, wireless communication systems with a single antenna cannot accomplish these requirements. Consequently, the access and utilization of multi-input multi-output (MIMO) antennas are becoming more common in contemporary high-speed transmission systems. This article covers the fundamentals of MIMO antenna operation, the metrics for MIMO antenna performance parameters, and the design methodologies for specifying the three most commonly used antennas (two-port, quad-port, and eight-port). Additionally, it discusses their ability to improve channel capacity significantly. It focuses on designing MIMO antennas with ultra-wideband (UWB) for 5G systems operating between 1 and 27 GHz and millimeter-wave (mmWave) bands from 30 to 100 GHz. This article is valuable for researchers interested in developing MIMO antennas for diverse applications. It compiles advanced methods related to materials, advancements, challenges, and state-of-the-art technologies used in the design of high-performance MIMO antennas. We concluded that antennas that operate at mmWave frequencies have small dimensions and suffer from isolation problems in the MIMO formation. In contrast, antennas operating below 6 GHz are large and do not suffer from isolation problems.
Propulsive fuselage aircraft complement the two under-wing turbofans of current aircraft with an embedded propulsion system within the airframe to ingest the energy-rich fuselage boundary layer. The key design features of this embedding are examined and related to an aero-propulsive performance assessment undertaken in the absolute reference frame which is believed to best evaluate these effects with intuitive physics-based interpretations. First, this study completes previous investigations on the potential for energy recovery for different fuselage slenderness ratios to characterise the aerodynamics sensitivity to morphed fuselage-tail design changes and potential performance before integrating fully circumferential propulsors. Its installation design space is then explored with macro design parameters (position, size and operating conditions) where an optimum suggests up to 11% fuel savings during cruise and up to 16% when introducing compact nacelles and re-scaling of the under-wing turbofans. Overall, this work provides valuable insights for designers and aerodynamicists on the potential performance of their concepts to meet the environmental targets of future aircraft.
Ultrasonic standing wave technology offers an ideal platform for manipulating particles in microfluidics. We study how fluid viscoelasticity and acoustic boundary formation in micro-confinements affect ultrasound-induced perturbations. These perturbations influence acoustic energy density (AED) and consequently particle transport dynamics. Our approach combines theoretical, numerical and experimental methods. Using the Oldroyd-B model for viscoelastic fluids, we advance acoustic radiation force (ARF) formulations of Doinikov et al. (Phys. Rev. E, vol. 104, no. 6, 2021a; Phys. Rev. E, vol. 104, no. 6, 2021b) for particles much smaller than the acoustic wavelength. This improved approach allows us to decouple AED and acoustic contrast factor terms in the ARF expression. It also enables us to examine the effects of viscoelastic parameters: $\mu ^*$ (ratio of the viscosity of the viscoelastic fluid to that of base Newtonian fluid) and $De$ (product of fluid relaxation time and actuation frequency) on AED and particle migration. Remarkably, we show that increasing fluid elasticity or $De$ transitions viscoelastic fluids from the energy dissipation (relaxation) mode to the energy storage (frozen) mode, increasing AED. Conversely, increasing viscosity ($\mu ^*$) reduces AED. Thus, our findings suggest that elastic effects accelerate particle migration, while viscous effects decelerate it. Consequently, a viscoelastic fluid-filled micro-confinement acts as an energy dissipation device at low $De$ and an energy storage device at high $De$. Particle migration can be controlled by adjusting viscoelastic and acoustic parameters, at a fixed power input. Our theoretical and numerical findings are validated with our experimental data. Our study advances the fundamental understanding of particle migration in viscoelastic fluids under ultrasound, and can significantly impact future studies on particle/cell migration in bio-fluids.
Rehabilitation services play a vital role in the quality of life for children with disabilities. China has established a system of rehabilitation services, in which eligible children with disabilities are entitled to free rehabilitation services at designated institutions. This study reveals, however, that some rural families decide to discontinue the free rehabilitation services. This study attempts to explore the reasons for their decision through qualitative methods. We find that the ideology of developmentalism with its emphasis on efficiency dominates policy actors’ thinking and actions. In a cultural discourse that prioritises utility and economic development, children with disabilities are regarded by policy implementers as a ‘non-priority’, by their service providers as an opportunity for profit, and by their parents as ‘futureless’. That these families discontinue using these free services seems to result from the policy attitudes mentioned above.
In recent times, there has been increased focus on the utilisation of virtual reality flight simulators in flight training, driven by their advantages compared to conventional methods. However, a paucity of empirical evidence has prevented their widespread introduction and regulatory approval. Existing research focuses on single-user simulators, leaving a gap in studies of collaborative training within virtual environments. Consequently, this paper investigates evidence-based simulator training within a collaborative virtual environment.
A mixed methods approach was adopted, where behaviours related to industry-standard competencies were observed in a virtual reality complex aircraft and thematic analysis applied to a post-experiment participant debrief. The findings showcase the feasibility of utilising a collaborative virtual environment for evidence-based training purposes in scenarios aligned to typical initial First Officer airline training programmes, which is a precursor to supplementing traditional professional pilot training techniques. In addition, the study found that the visual barriers imposed by head-mounted displays were overcome through the adoption of refined communication strategies, thus laying the groundwork for physically separated multi-crew pilot training.
Precise and efficient grasping detection is vital for robotic arms to execute stable grasping tasks in industrial and household applications. However, existing methods fail to consider refining different scale features and detecting critical regions, resulting in coarse grasping rectangles. To address these issues, we propose a real-time coarse and fine granularity residual attention (CFRA) grasping detection network. First, to enable the network to detect different sizes of objects, we extract and fuse the coarse and fine granularity features. Then, we refine these fused features by introducing a feature refinement module, which enables the network to distinguish between object and background features effectively. Finally, we introduce a residual attention module that handles different shapes of objects adaptively, achieving refined grasping detection. We complete training and testing on both Cornell and Jacquard datasets, achieving detection accuracy of 98.7% and 94.2%, respectively. Moreover, the grasping success rate on the real-world UR3e robot achieves 98%. These results demonstrate the effectiveness and superiority of CFRA.