To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Adsorption of Ni(II) by Ca- and Na-saturated kaolinites was studied in equilibrating solutions with total Ni concentrations ranging from 118 to 946 μg/liter. Background electrolytes used in these experiments were 0.005,0.01,0.025, and 0.5 M Ca(N03)2,0.002 and 0.005 M CaSO4, 0.01 and 0.1 M NaNO3, and 0.005 and 0.05 M Na2SO4, Ion speciation in equilibrium solutions was calculated by the computer program GEOCHEM. Computed Ni2+ concentrations and activities at equilibrium were correlated with total Ni adsorbed by kaolinite. Increasing ionic strength resulted in decreasing Ni adsorption. Adsorption of Ni was greater from solutions when NO3 was the dominant anion. Based on adsorption data in SO4 medium, the standard free energy of adsorption of Ni2+ ion on kaolinite was computed to be —27 kJ/mole.
Sorption of K from mixed KCl and CaCl2 solutions by K-depleted, Ca-saturated phlogopite was studied to determine the effect of particle size. The experiments were done at room temperature with 25 mg of K-depleted phlogopite samples in 50 ml solutions which were 0·002 N with respect to KCl and 0·02 N with respect to CaCl2.
Sorption of K increased sharply with increase in particle size. The 54–75 μm fraction sorbed nearly all, whereas the 0·2–2 μm fraction sorbed less than half, of its depleted K. The 5–20 μm fraction sorbed an intermediate amount. This relationship is explained by the same hypothesis which accounts for the increase of K release with increase in particle size. That is, bending of unit mica layers due to peripheral expansion is greater in large and thick particles than in small and thin ones. This increased bending induces the greater K release from large particles. Similarly, bending due to peripheral collapse of hydrated layers is greater in large particles than in small ones. Thus, more energy is needed to initiate layer collapse and restrict further K uptake in the large particles which results in their greater K sorption capacity.
These results imply that in natural conditions, as in soils, the coarse vermiculite and weathered mica fractions may be more effective in sorbing K from solution than their fine counterparts.
A study was conducted to (1) determine the conditions of hydroxy-Mg interlayer formation with respect to type of clay mineral, acidity, and time; (2) evaluate the stability of this interlayer to dissolution treatments; and (3) ascertain the effects of such treatments upon the determination of clay minerals in soils and sediments. Hydroxy-Mg interlayers were formed in montmorillonite and vermiculite by adding MgCl2 and NaOH in amounts to give a wide range of pH. The resulting chloritic intergrades were examined after 10 days, 6 months, and 1 yr.
Alkaline conditions favored the formation of hydroxy magnesium interlayers in phyllosilicates. Hydroxy-Mg interlayered montmorillonite which resulted from 10 days equilibration at pH 10·4 did not expand upon solvation with ethylene glycol and exhibited practically no collapse after K-saturation and heating at 550°C. A small amount of interlayer was formed between pH 6·8 and 9·8 (10 days). In contrast, vermiculite exhibited no evidence of interlayer formation at pH values up to 9·7 (10 days). Chloritic intergrades formed at pH 10·7 did not collapse after K-saturation and heating at 300°C but did so at 550°C. Hydroxy-Mg interlayers were not formed in either mineral by using a drying method. This method apparently failed to provide the required alkaline conditions for interlayer formation.
The amount of magnesium interlayers present in the phyllosilicate systems decreased with time. The interlayers formed in vermiculite decreased more sharply than those in montmorillonite.
Sequential dissolution treatments included boiling 2 per cent Na2CO3, buffered sodium citrate-dithionite, a second citrate-dithionite treatment, and boiling NaOH. Hydroxy-Mg interlayers in montmorillonite exhibited a higher stability to sequential treatments than the interlayers formed in vermiculite. A stable 14 Å line was observed in interlayered montmorillonite after the dithionite-citrate and NaOH treatments.
The interlayers in montmorillonite showed a relatively high stability to HCl dissolution treatments. In contrast, most of the magnesium interlayer in vermiculite was removed by two HCl washings.
The reagents used in this study are sometimes used to remove coatings and cementing agents from soil surfaces prior to particle size and clay analysis. The present data show that these treatments also remove some hydroxy-Mg interlayers and produce changes in properties of clays. A proper interpretation of data for clay mineral identification and characterization must recognize these changes due to treatment.
The 2023 Texas federal district court decision Braidwood Management, Inc. vs. Becerra enjoined the enforcement of the Affordable Care Act’s preventive care mandate, which requires “first-dollar” insurance coverage for a range of preventive measures, including pre-exposure prophylaxis (PrEP), an HIV prophylactic drug. Most scholars have analyzed the case with respect to the conflict between public health goals and the Religious Freedom Restoration Act (RFRA). This Article suggests another reading of the Braidwood decision in light of a broader socio-legal phenomenon I call preventive health stigma. Stereotypes attach to the underlying medical condition that a given measure is aimed at preventing, or to the actual preventive measure resulting in stigmatization. Preventive health stigma penetrated the Braidwood decision through the case’s focus on PrEP users’ signaled prurient behavior instead of the drug’s proven health benefits. After offering a novel reading of the Braidwood decision, this Article also shows how preventive health stigma surfaces in the legal treatment of other preventive measures, such as abortion pills, masking, and vaccines. Understanding how stigma attaches to preventive medicine constitutes an important step in understanding how law and prejudice can undermine health reform.
James D. Riley became the first lay editor of The Americas journal in 1987, leading the journal to its current status as a leading refereed academic publication of Latin American history and cultural studies. The interview addresses Riley’s formative years as a scholar, his work with the Academy of American Franciscan History and The Americas, and the transformation of the journal from 1987 to his retirement from the academy.
The Ca-K exchange isotherms were determined at two temperatures for two highly montmorillonitic iron-rich soil clays in their oxidized and reduced states. The thermodynamic parameters K, ΔG0, ΔH0 and ΔS0 were calculated for the exchange reactions.
It was found that the formation of K-clay from Ca-clay in both the oxidized and reduced state was accompanied by negative free energy, enthalpy and entropy changes. The results indicate that K is more strongly bound than Ca by the clay and the Ca-preference shown by the isotherms may be due to entropy changes in solution.
The oxidation of crystal structure iron resulted in an increase in K selectivity of the clay and a decrease in the free energy, enthalpy and entropy changes of the Ca-K exchange reaction. It was concluded that K is more strongly held by the oxidized clay than the reduced one, which is possibly due to a more nearly dioctahedral character in the oxidized than in the reduced state.
Thermal transformation of chrysotile from Uruaçu District, state of Goiás, Brazil, heated in dry conditions at temperatures from 600°C to 1300°C was studied by high resolution electron microscopy and selected area electron diffraction (SAD). Up to 600°C, no morphological or SAD pattern changes were observed. At 600°C, the fibrils were still crystalline with the characteristics of the clinochrysotile. In addition, a new fringe system of 10–15 Å spacings appeared sporadically parallel to the 7.3 Å fringes of chrysotile. Areas of these extra fringes seem to constitute favorable sites for the nucleation of forsterite. At 650°C, forsterite nuclei appeared inside the nearly amorphous fibrils in the shape of patches consisting of flaky crystallites. At 700°C the chrysotile structure had disappeared; the new spots present in the SAD pattern were indexed as those of forsterite. Between 800–900°C the crystallinity of the patches was clearly demonstrated. From the lattice images in the patches, topotactic relations between chrysotile and forsterite were analyzed. At 1000°C very tiny grains of enstatite were formed mixed with forsterite grains. The SAD pattern is complex due to the coexistence of forsterite, enstatite, and silica-rich amorphous areas. From 1100°C to 1300°C the tridimensional growth of enstatite was promoted. The present results support the topotactic relations between chrysotile and forsterite found by X-ray analysis although differences up to several degrees may exist when these phases are observed microscopically. Evidence suggesting a topotactic growth between forsterite and enstatite was also obtained.
A stable porous system consisting of montmorillonite cross-linked by Al-hydroxide oligomers was synthesized by reacting at room temperature an aqueous solution of such oligomers with a unit-layer dispersion of montmorillonite. The resulting cross-linked montmorillonite (Al-CLM) is a nonswelling material, showing basal spacings of 14.4 to 18.8 Å after air drying and between 14.2 to 18.0 Å after treatment at 110°C. The basal spacing is found to depend on the age and OH/Al ratio of the Al-hydroxide solution, as well as on the relative amounts of the two reactants. A specific surface area of 160 m2/g and a diffraction pattern with a dominant basal spacing of 17.5 Å is obtained by using Al-hydroxide with OH/Al = 1.85, aged for at least 5 days, and by applying an Al/montmorillonite ratio greater than 1.5 in the cross-linking process. The basal spacing of Al-CLM remains essentially unchanged after heating at 220°C, while the specific surface area is not affected by heat treatment up to 480°C.
Two possible configurations of Al-hydroxide oligomers, homogeneously distributed between parallel montmorillonite unit-layers, were considered in order to account for the basal spacing of 17.5–18.8 Å, viz. (a) stacking of two oligomeric ring units in parallel orientation relative to the clay lamellae and (b) perpendicular orientation of individual oligomeric units.
The numbers do tell a story: 2022 was the year with the fewest disputes ever submitted to the WTO. The possibility to appeal into the void must have a played a role, dis-incentivizing potential complainants from formally submitting disputes. Appeal into the void? This requires some explanation.
Rank-correlation coefficients are utilized to show relationships between physical and chemical properties of Georgia and English kaolins. Montmorillonite impurity in the Cretaceous kaolins shows high level correlations with magnesium, iron, silica-alumina ratio, CEC, water sorption, surface area, sediment volume, and Brookfield viscosity. Cation exchange capacity of these kaolins is believed to be related primarily to montmorillonite impurity. Low shear viscosity measurements show a strong correlation to properties indicative of montmorillonite. Correlations with viscosity are believed to be related primarily to surface area and particle packing. Packing volume exerts a dominant effect on high shear rheology. Differences in particle shape are not of sufficient magnitude to show a significant effect on rheology. A strong inverse relationship of vanadium with high shear viscosity indicates that the wetting effect of vanadium organic complexes or adsorption of (VO4)−3 tetrahedra at gibbsite edge faces may be mechanisms for viscosity reduction. Brightness and whiteness are related to titanium and iron-bearing impurities as well as the amount of particles having optimum diameters for light scattering. Well-crystallized kaolinites are believed to have been derived primarily from feldspar. Muscovite alteration may be retarded where well-crystallized kaolinites occur. To account for the inverse relation of vanadium with crystallinity, it is suggested that complex vanadium ions may act as growth poisons.