To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The soils of the summit region of Mauna Kea are similar to the soils of the high mountain deserts and to the soils of cold deserts. Dramatic differences, however, exist between the soils of the summit and other neighboring cones and the soils of the glaciated terrain. The soils of some of the cones of the summit area are clay rich and contain phyllosilicate minerals; the soils of the glaciated terrain are sandy and contain X-ray amorphous clay. Montmorillonite and a Mg-rich trioctahedral mineral identified as saponite are the clay minerals of the summit. Because the summit area of Mauna Kea supported an ice cap at the time of the formation of the cones, the origin of the smectite minerals could have resulted from the alteration of the tephra by steam and water released in the melting of the ice. Hypogene fluids are, however, more likely to be responsible for the genesis of the phyllosilicate minerals.
The surface charge density of mica (001) cleavages was determined by counting the number of fission particle tracks in a given area of a 6-mm muscovite disc replica with optical and scanning electron microscopy after saturation of the layer charge by washing with 0.5 M UO2(NO3)2 solution, dilution of the excess salt by washing with 0.01 M UO2(NO3)2 in 0.005 M HNO3 (pH 2.4), blotting off the excess liquid, thermal neutron activation in contact with the muscovite disc, etching the muscovite, and counting the 235U fission tracks/cm2. In initial studies, the uranyl cations were found to hydrolyze from the cleavage surface continuously during the washings with water, ethanol or acetone to remove excess salts, but the uranyl cations in the interlayers near broken edges and crystallographical steps were strongly retained even against washings with 0.5 M CaCl2 solution. The hydrolysis of UO22 + from the smooth portions of the flake surfaces was avoided by the use of three 1-hr final washings with the 0.01 M UO2(NO3)2 in 0.005 M HNO3 solution. Each flake was pressed between filter papers three times to remove the excess solution. A negligible amount of excess salt remained on the cover glass controls. The UO22 + cations retained (mean, 3.6 ± 0.2 × 10−7 mequiv./cm2) on the cleavage surfaces of various micas were nearly equivalent to the theoretical surface charge (cation exchange capacity, 3.5 × 10−7 mequiv./cm2), showing that hydrolysis was prevented. The uranium on the unblemished mica planar surfaces increased with increasing uranyl concentrations in the final washing solution, indicating that the excess salt remaining on the surfaces had become significant. With a given UO22 + salt concentration, the uranium on the surface increased on increasing the solution pH from 2.5 to 3.5, attributable to the formation of polymeric ions such as U2O52 + and U3O82 + with higher uranium retention per unit positive charge equivalent to the fixed negative charge of the mineral surface. Uranyl cations replaced much of the interlayer cations from vermiculites even after K, Rb and Cs presaturation and drying from 110°C were employed. Strong adsorption of uranyl cations (in a form not replaced by washings with a neutral salt solution), which occurred in the defects of micaceous minerals, is important in the interpretation of actinide element retention in soils and sediments wherein these minerals are abundant.
The adsorption of Ni(II) and Cu(II) on to the clay minerMs kaolinite, chlorite, and illite has been investigated. The quantity of Ni(II) at pH 6 and Cu(II) at pH 5 adsorbed has been found to vary in the manner chlorite > illite > kaolinite. Examination of the mode of bonding of the metal ions to the clay minerals using X-ray photoelectron spectroscopy (XPS) has been carried out. Comparison of the binding energies for metal ions in octahedral sites in selected minerals (reference minerals) and in simple nickel and copper containing compounds with values for Ni(II) and Cu(II) adsorbed on chlorite indicate that nickel(II) is probably bound as the aquo ion while copper(II) may be adsorbed as Cu(OH)+.
The Numedal River basin (6000 km2) in central and east Norway contains 3 × 109 m3 of clayey material, corresponding to a clay loam sediment, which contains 2 million tons of absorbed rare earth elements.
The clay mineralogy varies systematically from the till clays to a marine facies. It is concluded that the phyllosilicates of the clay fraction and tills originated from phyllosilicate minerals of the crystalline bedrock through a degradation partly due to preQuaternary weathering which dissolved a great part of the rock-forming minerals.
Small angle X-ray scattering curves have been obtained for a series of Na Wyoming Bentonite clay samples containing 10% clay by weight and NaPO3 in concentrations ranging from 0 to 100 meq/1. From the scattering data, the relative probability of spacings between parallel clay platelets was computed. For the sample containing no NaPO3, the probability distribution showed a relatively broad maximum at an interparticle spacing of about 180Å. As the concentration of NaPO3 increased, the maximum became sharper and occurred for smaller interparticle distances. At NaPO3 concentrations between 25 and 100 meq/1, the position d of the maximum was given approximately by the equation d = 21 + 18.4c-1/2, where d is in angstroms, and c is the NaPOs concentration in eq/1. The similarity of this relation to the dependence of d on the concentration of NaCl (Norrish and Rausell-Colom, 1963; Norrish, 1954) suggests that the interparticle spacing depends primarily on the sodium ion concentration and not on the concentration of the anion. The value of d appears to be independent of whether the gel was prepared by the method of Norrish and Rausell-Colom, in which a dried flake was allowed to come to equilibrium with an electrolyte solution, or whether, as in this investigation, the gel was obtained by centrifuging a dilute suspension. Since the Na ions act to reduce the double-layer repulsion between platelets, while the anions tend to be adsorbed on the platelet edges and thus reduce the edge-to-face linkages (H. van Olphen, 1962), the value of the most probable interparticle distance appears to be determined primarily by the magnitude of the double-layer repulsion, even though other properties of the clay gels, such as the rheological behavior, are governed mainly by edge-to-face attractions.
Sesquioxidic soil clays from Oxisols in South Africa, Australia and Brazil, and two clays from Andosols in Japan and New Zealand, were investigated by selective dissolution techniques. Acid ammonium oxalate (pH 3) was found to be superior to currently popular alkaline reagents for extracting amorphous aluminosilicates and alumina from these clays. Boiling 0.5 N NaOH dissolved large amounts of finely-divided kaolinite and halloysite, while hot 5% Na2CO3 reaction was too slow (partial dissolution of synthetic amorphous aluminosilicates with one extraction) and insufficiently selective (gibbsite and kaolin of poor crystallinity dissolve to a variable extent). On the other hand, synthetic gels (molar SiO2/Al2O3 ranging from 0.91 to 2.55) dissolved completely after 2 hr shaking in the dark with 0.2 M acid ammonium oxalate (0.2 ml/mg). Specificity of oxalate for natural allophane was indicated by removal of similar quantities of silica and alumina using different clay:solution ratios. Oxalate extraction data indicated that allophane is absent in Oxisol clays. Allophane was determined quantitatively in volcanic-ash soil clays by allocating hydroxyl water content to oxalate-soluble silica plus alumina on the basis of an ignition weight loss-chemical composition function for synthetic amorphous alumino-silicates. Parameters of chemical reactivity and distribution of electric charges following various chemical pretreatments of allophane were found to correspond closely to those predicted on the basis of synthetic gel behaviour. Results for Oxisol clays suggested that the role of amorphous (oxalate-soluble) alumina in governing physicochemical properties is generally less than that of the poorly-crystalline, Al-substituted iron oxide component which is removed by deferration with citrate-dithionite-bicarbonate reagent.
Natural erionite was exhaustively ion exchanged with Na+ to give the anhydrous unit-cell composition (K1.9Na5.4Ca0.1Mg0.1)[(AlO2)7.4(SiO2)28.6]. A thermodynamic study of alkali and alkaline earth metal ion exchange in this zeolite was made and the selectivity series found to be Rb > Cs ≥ K > Ba > Sr > Ca > Na > Li. In all cases approximately two K+ ions per unit cell (probably those in the cancrinite cages) could not be replaced by conventional ion exchange. It was also found that two Na+ ions per unit cell are extremely difficult to replace with alkaline earth ions. It is believed that complete replacement of the approximately six Na+ cations in the two large cages per unit cell of erionite would result in a non-uniform, divalent cation population in these cages. A more stable anhydrous composition is (K2Ca2Na2)[(AlO2)8(SiO2)28] in which each large cage contains one Ca2* or other alkaline earth cation and one Na+ ion.
Electron micrographs of 7 Å-type and 10 Å-type garnierites have been recorded at 5·104–105X magnifications to show the morphological character of these minerals, and at 106X magnification to show structural features of the particles. The 7 Å, serpentine-like minerals show a greater variety of morphological forms including tube- and rod-shaped particles and also platy forms and poorly defined, fluffy particles, probably aggregates. The 10 Å, talc-like minerals show mainly platy forms and fluffy aggregates, and generally very few tube or rod-shaped particles. At 106X magnifications, the 7 and 10 Å layer spacings are seen directly. In the samples examined, the 7 Å spacings are more clearly and more regularly defined than the 10 Å spacings.
The objective of this paper is to present flow sheets for a system of quantitative minera-logical analysis of clays of soils and sediments and to show representative results. Selective dissolution analysis by the Na2S2O7-HCl-NaOH procedure yields the quartz and feldspar contents (0 to 63%) and differentiates feldspar K from mica K. The NaOH-thermal system of selective dissolution yields the allophane plus gibbsite, kaolinite plus halloysite, and dickite contents (0 to 84% for the sediments; 1 to 25% for soil clays) Mica contents (0 to 92% for the rock specimens, 7 to 43% for soil clays) are determined by nonfeldspathic K (and Na). Vermiculite contents (1 to 97% of specimens; 3 to 21% for soil clays) are measured by blocking of interlayer CEC by drying at 110°C while K saturated and replacing with NH4Cl. Montmorillonite (and palygorskite) contents (0 to 85% of specimens; 3 to 36% of soil clays) are determined by the CEC not blocked by the K and NH4 sequence for vermiculite. Chlorite contents (0 to 85% for specimens; 0 to 37% for soil clays) are determined by thermal gravimetric analysis, after allocation of OH water lost between 300 and 950°C to other hydrous minerals determined.
The best evidence of the accuracy of the system of analysis lies in the consistent total recovery of 24 standard mineral samples averaging 100.4 ± 1.3 (± standard error of means) and of 22 soil clay samples averaging 99.5 ± 0.8. The different constituents were present in widely different proportions in the various samples, and were determined by independent methods. The complementary total of near 100% (maximum range 95 to 105% for specimens; 95 to 103% for soil clays) for the analyses is a significant measure of the specificity of the several determinations.