To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Postmenopausal women have augmented pressure wave responses to low-intensity isometric handgrip exercise (IHG) due to an overactive metaboreflex (postexercise muscle ischaemia, PEMI), contributing to increased aortic systolic blood pressure (SBP). Menopause-associated endothelial dysfunction via arginine (ARG) and nitric oxide deficiency may contribute to exaggerated exercise SBP responses. L-Citrulline supplementation (CIT) is an ARG precursor that decreases SBP, pulse pressure (PP) and pressure wave responses to cold exposure in older adults. We investigated the effects of CIT on aortic SBP, PP, and pressure of forward (Pf) and backward (Pb) waves during IHG and PEMI in twenty-two postmenopausal women. Participants were randomised to CIT (10 g/d) or placebo (PL) for 4 weeks. Aortic haemodynamics were assessed via applanation tonometry at rest, 2 min of IHG at 30 % of maximal strength, and 3 min of PEMI. Responses were analysed as change (Δ) from rest to IHG and PEMI at 0 and 4 weeks. CIT attenuated ΔSBP (−9 ± 2 v. −1 ± 1 mmHg, P = 0·006), ΔPP (−5 ± 2 v. 0 ± 1 mmHg, P = 0·03), ΔPf (−6 ± 2 v. −1 ± 1 mmHg, P = 0·01) and ΔPb (−3 ± 1 v. 0 ± 1 mmHg, P = 0·02) responses to PEMI v. PL. The ΔPP during PEMI was correlated with ΔPf (r = 0·743, P < 0·001) and ΔPb (r = 0·724, P < 0·001). Citrulline supplementation attenuates the increase in aortic pulsatile load induced by muscle metaboreflex activation via reductions in forward and backward pressure wave amplitudes in postmenopausal women.
The temporally developing self-similar turbulent jet is fundamentally different from its spatially developing namesake because the former conserves volume flux and has zero cross-stream mean flow velocity whereas the latter conserves momentum flux and does not have zero cross-stream mean flow velocity. It follows that, irrespective of the turbulent dissipation's power-law scalings, the time-local Reynolds number remains constant, and the jet half-width $\delta$, the Kolmogorov length $\eta$ and the Taylor length $\lambda$ grow identically as the square root of time during the temporally developing self-similar planar jet's evolution. We predict theoretically and confirm numerically by direct numerical simulations that the mean centreline velocity, the Kolmogorov velocity and the mean propagation speed of the turbulent/non-turbulent interface (TNTI) of this planar jet decay identically as the inverse square root of time. The TNTI has an inner structure over a wide range of closely spatially packed iso-enstrophy surfaces with fractal dimensions that are well defined over a range of scales between $\lambda$ and $\delta$, and that decrease with decreasing iso-enstrophy towards values close to $2$ at the viscous superlayer. The smallest scale on these isosurfaces is approximately $\eta$, and the length scales between $\eta$ and $\lambda$ contribute significantly to the surface area of the iso-enstrophy surfaces without being characterised by a well-defined fractal dimension. A simple model is sketched for the mean propagation speeds of the iso-enstrophy surfaces within the TNTI of temporally developing self-similar turbulent planar jets. This model is based on a generalised Corrsin length, on the multiscale geometrical properties of the TNTI, and on a proportionality between the turbulent jet volume's growth rate and the growth rate of $\delta$. A prediction of this model is that the mean propagation speed at the outer edge of the viscous superlayer is proportional to the Kolmogorov velocity multiplied by the $1/4$th power of the global Reynolds number.
What are the implications of an aging population for financial stability? To examine this question, we exploit geographic variation in aging across U.S. counties. We establish that banks with higher exposure to aging counties increase loan-to-income ratios. Laxer lending standards lead to higher nonperforming loans during downturns, suggesting higher credit risk. Inspecting the mechanism shows that aging drives risk-taking through two contemporaneous channels: deposit inflows due to seniors’ propensity to save in deposits; and depressed local investment opportunities due to seniors’ lower credit demand. Banks thus look for riskier clients, especially in counties where they operate no branches.
Antimicrobial stewardship programs (ASPs) exist to optimize antibiotic use, reduce selection for antimicrobial-resistant microorganisms, and improve patient outcomes. Rapid and accurate diagnosis is essential to optimal antibiotic use. Because diagnostic testing plays a significant role in diagnosing patients, it has one of the strongest influences on clinician antibiotic prescribing behaviors. Diagnostic stewardship, consequently, has emerged to improve clinician diagnostic testing and test result interpretation. Antimicrobial stewardship and diagnostic stewardship share common goals and are synergistic when used together. Although ASP requires a relationship with clinicians and focuses on person-to-person communication, diagnostic stewardship centers on a relationship with the laboratory and hardwiring testing changes into laboratory processes and the electronic health record. Here, we discuss how diagnostic stewardship can optimize the “Four Moments of Antibiotic Decision Making” created by the Agency for Healthcare Research and Quality and work synergistically with ASPs.
Older adults, 65 years of age and older, living in long-term care (LTC) commonly experience anxiety. This study aimed to understand care providers’ perspectives on the barriers to and facilitators of managing anxiety in residents of LTC. Ten semi-structured interviews with care providers in LTC were completed. Framework analysis methods were used to code, thematically analyze, designate codes as barriers or facilitators, and map the codes to the Theoretical Domains Framework. Themes were categorized as acting at the resident, provider, or system level, and were labelled as either barriers to or facilitators of anxiety care. Key barriers to anxiety care at each level were resident cognitive impairment or co-morbidities; lack of staff education, staff treatment uptake and implementation; as well as the care delivery environment and access to resources. There is a need to prioritize measurement-based care for anxiety, have increased access to non-pharmacological treatments, and have a care delivery environment that supports anxiety management to improve the care for anxiety that is delivered to residents.
Cet article aborde les relations sino-africaines dans le cadre de l'analyse comparative des politiques étrangères. Il propose une analyse constructiviste des stratégies diplomatiques du Niger et du Burkina Faso dans leurs relations avec la RPC et Taïwan depuis les années soixante. En s'inspirant d'une démarche éclectique combinant d'une part, agents et structures et de l'autre, facteurs domestiques et facteurs systémiques, il explique les stratégies fluctuantes de reconnaissance diplomatique des deux États à l’égard des deux « Chine » par la construction sociale de l'intérêt national. Les résultats corroborent les postulats du constructivisme sur le poids des idées et des contextes dans la fabrique de l'intérêt national.
In this work, a near-wall model, which couples the inverse of a recently developed compressible velocity transformation (Griffin et al., Proc. Natl Acad. Sci., vol. 118, 2021, p. 34) and an algebraic temperature–velocity relation, is developed for high-speed turbulent boundary layers. As input, the model requires the mean flow state at one wall-normal height in the inner layer of the boundary layer and at the boundary-layer edge. As output, the model can predict mean temperature and velocity profiles across the entire inner layer, as well as the wall shear stress and heat flux. The model is tested in an a priori sense using a wide database of direct numerical simulation high-Mach-number turbulent channel flows, pipe flows and boundary layers (48 cases, with edge Mach numbers in the range 0.77–11, and semi-local friction Reynolds numbers in the range 170–5700). The present model is significantly more accurate than the classical ordinary differential equation (ODE) model for all cases tested. The model is deployed as a wall model for large-eddy simulations in channel flows with bulk Mach numbers in the range 0.7–4 and friction Reynolds numbers in the range 320–1800. When compared to the classical framework, in the a posteriori sense, the present method greatly improves the predicted heat flux, wall stress, and temperature and velocity profiles, especially in cases with strong heat transfer. In addition, the present model solves one ODE instead of two, and has a computational cost and implementation complexity similar to that of the commonly used ODE model.
Cinquante ans après la Conférence de Stockholm de 1972, la littérature est appelée à offrir un compte rendu sur le passé et informer les décisions à venir. Dans ce contexte, le présent essai critique propose une revue historique de la gouvernance mondiale de l'environnement, couvrant la période de 1945 à 2022. Pour ce faire, il réunit les processus et évènements marquants des dernières décennies et distingue les moments clés ayant façonné la gouvernance mondiale de l'environnement. Informé par la littérature scientifique et des documents officiels, l'article expose l’émergence, la mise à l'agenda et l'institutionnalisation de plusieurs enjeux environnementaux. Il contribue ainsi à situer les développements qu'a connus la gouvernance mondiale de l'environnement et contextualiser les processus en cours. La conclusion de l’étude invite à accorder une plus grande attention aux enjeux environnementaux et à repenser la gouvernance mondiale de l'environnement au-delà des frontières, tant étatiques que disciplinaires.
In this paper the three-dimensional finite-time Lyapunov exponent (FTLE) field of a direct numerical simulation of a flat-plate turbulent boundary layer is analysed in several wall-parallel sections. The data consider a case at a low subsonic Mach number with a moderate positive pressure gradient in the streamwise direction. In contrast to other studies mainly focusing on the maxima of the FTLE field, particular emphasis is placed on the regions of minimal stretching between the vortices and shear layers of the three-dimensional turbulent flow field. These visually appear as contiguous islands or ‘valleys’ between the ‘ridges’ of the FTLE maxima, both at forward and backward integration of the flow field in time. To clearly distinguish the structures investigated from their more common counterparts (e.g. Lagrangian coherent structures, LCS), the acronym LAMS (Lagrangian areas of minimal stretching) is proposed to denote the associated cohesive fluid regions. Consistent with intuition, the largest LAMS occur near the boundary-layer edge, where large regions of homogeneous laminar external flow coexist with upwelling turbulent structures. Compensating for turbulent regions pushing upward, they sink from there down toward the wall, becoming smaller and longer. This process is associated with an increased relative velocity of the LAMS compared with the mean flow, which is observed over the whole boundary layer in the range $y^+ \gtrsim 10$. Furthermore, it is observed that the Q4 (sweep) events contained in the LAMS clearly dominate over Q2 (ejection) events above $y^+ \approx 10$. Thereby, local maxima occur at $y^+ \approx 20$ and near the boundary-layer edge. Below $y^+ \approx 10$, the relationship reverses. Sweeping LAMS from above $y^+ \approx 10$ and ejecting LAMS from below meet in the layer where the maximal vortical activity occurs. The latter is caused by mostly streamwise oriented vortices with maximal vortex stretching in the streamwise direction. Overall, LAMS are associated with cohesive fluid regions between the surrounding vortices and shear layers that both drop down from the boundary-layer edge toward the wall in the outer region of the boundary layer and lift from the wall in the near-wall region.