We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Obsessive-compulsive disorder (OCD) is a neurobehavioral condition that can lead to functional impairment and decreased quality of life. In this chapter, clinical presentation, diagnostic considerations, and pathophysiology of OCD are reviewed. An overview of the theoretical models of OCD are provided, and evidence-based treatments for OCD, specifically cognitive behavioral therapy (CBT) with exposure and response prevention (ERP), pharmacotherapy, and neurosurgery, are discussed. The chapter concludes with suggestions for future research directions.
Donald Trump’s bid for the 2024 Republican presidential nomination is unique in that no former president since Theodore Roosevelt in 1912 has sought the nomination of their political party, nor has a candidate sought the nomination while facing multiple criminal indictments. With data from previous nomination cycles, we use presidential nominations from 1980 to 2020 to create a forecast for the 2024 Republican primaries. The variables in the equations consist of data from the pre-primary period (e.g., money raised, cash reserves, elite endorsements, and polling results) and a second model with results of the Iowa caucuses and the New Hampshire primary to forecast the remaining primary vote. The models accurately predict Trump’s victory despite the unique nature of his candidacy.
We develop methods for testing factor models when the weights in portfolios of factors and test assets can vary with lagged information. We derive and evaluate consistent standard errors and finite sample bias adjustments for unconditional maximum squared Sharpe ratios and their differences. Bias adjustment using a second-order approximation performs well. We derive optimal zero-beta rates for models with dynamically trading portfolios. Factor models’ Sharpe ratios are larger but standard test asset portfolios’ maximum Sharpe ratios are larger still when there is dynamic trading. As a result, most of the popular factor models are rejected.
Novel approaches are needed to understand and disrupt Mycobacterium tuberculosis transmission. In this proof-of-concept study, we investigated the use of environmental air samplings to detect and quantify M. tuberculosis in different clinic settings in a high-burden area.
Design:
Cross-sectional, environmental sampling.
Setting:
Primary-care clinic.
Methods:
A portable, high-flow dry filter unit (DFU) was used to draw air through polyester felt filters for 2 hours. Samples were collected in the waiting area and TB room of a primary care clinic. Controls included sterile filters placed directly into collection tubes at the DFU sampling site, and filter samplings performed outdoors. DNA was extracted from the filters, and droplet digital polymerase chain reaction (ddPCR) was used to quantify M. tuberculosis DNA copies. Carbon dioxide (CO2) data loggers captured CO2 concentrations in the sampled areas.
Results:
The median sampling time was 123 minutes (interquartile range [IQR], 121–126). A median of 121 (IQR, 35–243) M. tuberculosis DNA copies were obtained from 74 clinic samplings, compared to a median of 3 (IQR, 1–33; P < .001) obtained from 47 controls. At a threshold of 320 DNA copies, specificity was 100%, and 18% of clinic samples would be classified as positive.
Conclusions:
This proof-of-concept study suggests that the potential for airborne M. tuberculosis detection based on M. tuberculosis DNA copy yield to enable the identification of high-risk transmission locations. Further optimization of the M. tuberculosis extraction technique and ddPCR data analysis would improve detection and enable robust interpretation of these data.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
Spoofing is a kind of deliberate interference that aims to manipulate global navigation satellite system (GNSS) receivers into counterfeit position solutions. Conventional anti-spoofing methods are implemented prior to the calculation of the position solution, depending on the specific spoofing attack mechanisms. The paper presents a spoofing detection and mitigation method implemented in the position domain. The proposed method projects the correlograms of the visible satellites to a position-clock bias domain to construct the position domain projected correlogram. P(Y) code signatures retrieved from a reference station receiver are used to identify the counterfeit position solution and remove it from the victim receiver. Compared with the conventional single-channel spoofing detection technique, the proposed anti-spoofing method is more robust against thermal noise by combining the energy from multiple satellites. Detailed mathematical derivation of the statistical characteristics of this method is presented. Its effectiveness is validated using a realistic dataset generated by a Spirent GNSS simulator and NordNav wideband front-end. Results show that the proposed algorithm is capable of not only detecting a spoofing attack but also removing the spoofing effect from the victim receiver.
The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) are studying how samples might be brought back to Earth from Mars safely. Backward planetary protection is key in this complex endeavour, as it is required to prevent potential adverse effects from returning materials to Earth's biosphere. As the question of whether or not life exists on Mars today or whether it ever did in the past is still unanswered, the effort to return samples from Mars is expected to be categorized as a ‘Restricted Earth Return’ mission, for which NASA policy requires the containment of any unsterilized material returned to Earth. NASA is investigating several solutions to contain Mars samples and sterilize any uncontained Martian particles. This effort has significant implications for both NASA's scientific mission, and the Earth's environment; and so special care and vigilance are needed in planning and execution in order to assure acceptance of safety to Earth's biosphere. To generate a technically acceptable sterilization process across a wide array of scientific and other stakeholders, on 30–31 January 2019, 10–11 June 2019 and 19–20 February 2020, NASA informally convened a Sterilization Working Group (SWG) composed of experts from industry, academia and government to assess methods for sterilization and inactivation, to identify future work needed to verify these methods against biological challenges, and to determine their feasibility for implementation on robotic spacecraft in deep space. The goals of the SWG were:
(1) Understand what it means to sterilize and/or inactivate Martian materials and how that understanding can be applied to the Mars Sample Return (MSR) mission.
(2) Assess methods for sterilization and inactivation, and identify future work needed to verify these methods.
(3) Provide an effective plan for communicating with other agencies and the public.
This paper provides a summary of the discussions and conclusions of the SWG over these three workshops. It reflects a consensus position based on qualitative discussion of how agencies might approach the problem of sterilization of Mars material. The SWG reached a consensus that sterilization options can be considered on the basis of biology as we know it, and that sterilization modalities that are effective on terrestrial materials and organisms should be part of the MSR planetary protection strategy. Conclusions pointed to several industry standards for sterilization to include heat, chemical, UV radiation and low-heat plasma. Technical trade-offs for each sterilization modality were discussed while simultaneously considering the engineering challenges and limitations for spaceflight. Future work includes more in-depth discussions on technical trade-offs of sterilization modalities, identifying and testing Earth analogue challenge organisms and proteinaceous molecules against chosen modalities, and executing collaborative agreements between NASA and external working group partners to help close data gaps, and to establish strong, scientifically grounded sterilization and inactivation standards for MSR.
Additive manufacturing (AM) has made long strides in the recent past and rapidly evolved into a promising alternative in specific applications. The aircraft industry is not an exception to this. The true just-intime production possibility is critical for the aircraft maintenance industries, though the lack of material freedom is a major hurdle. Several fire-retardant materials were investigated for AM in the aerospace context, but mainly for fused deposition modeling (FDM). The material consolidation constraints in FDM led to the expansion to the use of selective laser sintering (SLS) to some extent. Nevertheless, the material options are still limited, proprietary, and lack scientific insights into the material consolidation mechanics. Attempts are made in this paper to fill this gap, evaluating a new fire-retardant material for processing by SLS. Experiments conducted to ascertain the material, process, structure, and consolidation relationships indicated energy density levels 0.062–0.070 J/mm2 with laser power 13 W and scan speed varied slightly around 390 mm/s to give the best laser sintering and mechanical property results in polyetherimide powders.
Previous studies used pre-primary variables (e.g., endorsements, national polls, and fundraising) and momentum variables from the Iowa and New Hampshire contests to predict presidential nomination outcomes. Yet, races with no elite favorite and no clear frontrunner in polls, such as in the 2020 Democratic race, are more difficult to forecast. We replicate and extend two forecasting models from 1980 to 2016 used by Dowdle et al. (2016) to predict the 2020 results. Our models suggest that Joe Biden may have been a stronger frontrunner than expected but that subsequent models may need to incorporate other early contests, such as the South Carolina primary. Overall, our results also argue that the fundamental factors in winning presidential nominations have remained relatively stable.
The Polar Sea Ice Topography REconstruction System, or PSITRES, is a 3D camera system designed to continuously monitor an area of ice and water adjacent to an ice-going vessel. Camera systems aboard ships in the polar regions are common; however, the application of computer vision techniques to extract high-level information from the imagery is infrequent. Many of the existing systems are built for human involvement throughout the process and lack automation necessary for round the clock use. The PSITRES was designed with computer vision in mind. It can capture images continuously for days on end with limited oversight. We have applied the system in different ice observing scenarios. The PSITRES was deployed on three research expeditions in the Arctic and Subarctic, and we present applications in measuring ice concentration, melt pond fraction and presence of algae. Systems like PSITRES and the computer vision algorithms applied represent steps toward automatically observing, evaluating and analyzing ice and the environment around ships in ice-covered waters.
SUSTAIN-2 (NCT02497287) was an open-label, phase III trial evaluating the safety of esketamine (ESK) nasal spray plus a newly initiated oral antidepressant (AD) for up to 1 year in adults with treatment-resistant depression (TRD). ESK is a schedule III drug that acts via glutamate receptor modulation. ESK is rapidly cleared from the plasma, and with intermittent dosing there is no accumulation. Thus, no withdrawal syndrome is expected. The current analysis assessed potential withdrawal symptoms in patients who discontinued ESK after long-term, intermittent use. In the absence of a glutamatergic-specific withdrawal scale, the Physicians Withdrawal Checklist1 (PWC-20) was used. The PWC-20 was designed to assess new or worsening benzodiazepine-like discontinuation symptoms after stopping non-SSRI anxiolytics.
Methods:
ESK nasal spray was administered two times per week during a 4-week induction phase (IND). Responders entered the optimization/maintenance phase (O/M) where ESK nasal spray was dosed either weekly or every two weeks for up to 48 weeks. Patients entered a 4-week follow up period (F/U) after discontinuation from either phase, during which continuation of the AD was recommended. PWC-20 assessments were conducted at the last ESK dosing (endpoint of IND or O/M) and at weeks 1, 2 and 4 of F/U. Symptoms were rated using a 0-3-point scale (Not present = 0, Mild = 1, Moderate = 2, Severe = 3). To account for worsening of underlying depression, subset calculations were performed for depressive symptoms (PWC-DS: loss of appetite; anxiety or nervousness; irritability; dysphoric mood or depression; insomnia; fatigue, lethargy or lack of energy; restlessness or agitation; headaches; muscle aches or stiffness; weakness; difficulty concentrating or remembering; depersonalization-derealization) and withdrawal symptoms (PWC-WS: nausea and/or vomiting; diarrhea; poor coordination; diaphoresis; tremor or tremulousness; dizziness or light-headedness; increased acuity of sound, smell, or touch; paresthesias).
Results:
Data on 357 patients entering F/U were included in the analysis (91 completed treatment during the IND phase and 141 were treated during O/M). The mean (SD) PWC-20 total scores (range 0-60) at treatment endpoint, Week 1, 2 and 4 were 7.2 (6.8), 7.5(7.0), 7.4 (7.1) and 7.2 (6.9), respectively. At these same assessment times, mean PWC-WS scores (range 0-24) were 0.9 (1.7), 1.0 (1.7), 1.0 (1.8), and 0.9 (1.8). Mean PWC-DS scores (range 0-36) were 6.3 (5.6), 6.5 (5.7), 6.5 (5.8), and 6.3 (5.7), respectively. Complete analysis of data from the entire SUSTAIN-2 dataset will be presented.
Conclusions:
No indication of drug-specific withdrawal symptoms was seen after stopping up to 1-year of intermittent treatment with ESK nasal spray for TRD.
Wildlife-based tourism poses opportunities and challenges for species conservation. Minimizing potential negative impacts of tourism is critical to ensure business and conservation enterprises can coexist. In north-western Namibia tourism is used as a conservation tool for the Critically Endangered black rhinoceros Diceros bicornis. However, black rhinoceroses are susceptible to human disturbance and may become displaced by tourist activities, which threatens not only the security and health of the rhinoceros population but also the sustainability of the business. We examined areas avoided by black rhinoceroses to understand how they respond to the type and extent of tourism development, and to evaluate management alternatives. We used spatial data on use of water sources by rhinoceroses to create a series of a priori candidate models that described the negative influences of tourist activities on rhinoceros habitat use. A model selection approach strongly supported a cumulative zones of influence model comprised of a 6 km buffer around the airstrip combined with a 1 km buffer around roads used daily. We compared alternative management scenarios using the best-performing model and found that an optimal road-use policy combined with airstrip relocation could minimize the total area avoided by the black rhinoceros to 7.1% and loss of high quality habitat to 20.7%. Under the worst-case scenario the area avoided and loss of high quality habitat were 153 and 85% greater, respectively, than under the scenario with optimal management. Our findings provide a novel framework and a practical, policy-relevant decision support tool to improve the contribution of tourism to wildlife conservation.
The acute care of stroke involves the administration of a clot-dissolving drug (thrombolysis) and/or its removal using endovascular clot retrieval. Earlier intervention results in significantly improved patient outcomes. Clinical assessment scores have limitations, and studies have shown that even the most robust scores have a reported false-negative rate of >20% for large vessel occlusive strokes that may be eligible for clot retrieval, while inappropriate bypass may delay delivery of thrombolysis.1 Quantitative Electroencephalography (QEEG) has been shown to have a very high sensitivity and specificity in the identification of acute stroke versus matched controls in an in-hospital setting.(2,3)
Aim:
The SPIDER study commenced in Brisbane, Queensland on September 3, 2018, and is investigating the use of an EEG recorder to gather data on acute stroke patients presenting to a metropolitan ambulance service.
Discussion:
The data collected will guide the development of a simple numerical output reference to guide decision making. The data may aid in identifying large vessel occlusive stroke and patients eligible for endovascular intervention. The QEEG will provide a more accurate and cost-effective tool for the prehospital clinician over other imaging technologies and can guide early destination decisions. This presentation discusses the implementation of a pre-hospital research platform, integration with the clinical dispatch matrix, staff engagement, patient recruitment, and the success of the project so far.
The Yellow Chat Epthianura crocea is comprised of three disjunct subspecies. Subspecies E. c. macgregori (Capricorn Yellow Chat) is listed as Critically Endangered under the EPBC Act and has a distribution that also appears to be disjunct, with a limited geographic area of less than 7,000 ha. Some populations are threatened by rapid industrial development, and it is important for conservation of the subspecies to determine the extent to which the putative populations are connected. We used 14 microsatellite markers to measure genetic diversity and to determine the extent of gene flow between two disjunct populations at the northern and southern extremes of the subspecies’ range. No significant differences in genetic diversity (number of alleles and heterozygosity) were observed, but clear population structuring was apparent, with obvious differentiation between the northern and southern populations. The most likely explanation for reduced gene flow between the two populations is either the development of a geographic barrier as a consequence of shrinkage of the marine plains associated with the rise in sea levels following the last glacial maxima, or reduced connectivity across the largely unsuitable pasture and forest habitat that now separates the two populations, exacerbated by declining population size and fewer potential emigrants. Regardless of the mechanism, restricted gene flow between these two populations has important consequences for their ongoing conservation. The relative isolation of the smaller southern groups (the Fitzroy River delta and Curtis Island) from the much larger northern group (both sides of the Broad Sound) makes the southern population more vulnerable to local extinction. Conservation efforts should focus on nature refuge agreements with land owners agreeing to maintain favourable grazing management practices in perpetuity, particularly in the northern area where most chats occur. Supplemental exchanges of individuals from northern and southern populations should be explored as a way of increasing genetic diversity and reducing inbreeding.
White clover is a weed in apple orchards that competes with the crop; also, flowers of this weed are unwanted attractants of honey bees at times when insecticides, which are harmful to these pollinators, are being applied. In 1997 and 1998, white clover flower head and plant control by clopyralid alone and with 2,4-D and apple tolerance to these herbicides were determined. Treatments consisted of clopyralid at 0.10 and 0.21 kg ae/ha, 2,4-D at 1.1 kg ae/ha, and 2,4-D at 1.1 kg ae/ha plus 0.03 or 0.05 kg ae/ha clopyralid, which were applied 2 wk before full apple bloom and 2 wk after full apple bloom, and a nontreated check. No crop injury occurred with any treatment. All herbicide treatments provided some white clover control and flower head suppression. No differences in white clover bloom reduction were observed through May among treatments containing clopyralid. As summer progressed, the effect of clopyralid rate became more apparent. Clopyralid at 0.21, regardless of application time, provided 99% vegetative control and 100% flower head reduction through July. Clopyralid plus 2,4-D controlled white clover better than 2,4-D alone. However, vegetative control and flower head reduction with clopyralid at reduced rates (0.03 or 0.05 kg ae/ha) plus 2,4-D were not acceptable (76% or less and 78% or less, respectively). Thus, clopyralid at 0.10 and 0.21 kg ae/ha will be necessary for acceptable white clover vegetation control and flower head reduction.
A field experiment was conducted in 1996 and 1997 to determine snap bean tolerance to halosulfuron based on crop injury, height, and yield. Halosulfuron was applied preemergence (PRE), postemergence (POST), and sequentially PRE followed by (fb) POST at 35, 53, and 70 g ai/ha, respectively. For comparison, a hand-weeded check was included. When data were averaged across years and halosulfuron rates, halosulfuron PRE, POST, and PRE fb POST provided similar yellow nutsedge control (74 to 82%) at snap bean harvest. Halosulfuron PRE resulted in 4% snap bean injury at harvest. Similarly, halosulfuron PRE fb POST resulted in 5% injury, while halosulfuron POST caused the most damage at 8%. Snap bean height at harvest was reduced 14% with halosulfuron POST compared to the weed-free check, with only 5 and 6% reduction caused by halosulfuron PRE and PRE fb POST, respectively. Halosulfuron POST reduced yield 39% compared to the weed-free check, while the PRE and PRE fb POST application timings produced yield similar to the check. When averaged across years and halosulfuron application timings, an increase in halosulfuron rate had no effect on yellow nutsedge control or snap bean yield. A linear trend was found for snap bean injury and plant height at harvest with snap bean injury increasing with an increase in halosulfuron rate while snap bean plant height decreased with an increase in halosulfuron rate. Application of halosulfuron PRE is the safest means to control yellow nutsedge in snap bean in North Carolina.
Response of ‘Dixie’, ‘Lemondrop’, ‘Multipik’, ‘Superpik’, and ‘Seneca Prolific’ summer squash to halosulfuron PRE or POST at 0.036, 0.053, and 0.072 kg ai/ha, or halosulfuron PRE fb halosulfuron POST at 0.018 fb 0.018, 0.027 fb 0.027, and 0.036 fb 0.036 kg/ha was field evaluated in 1997 and 1998. All halosulfuron treatments and rates reduced the height of cultivars 17–19% at 6 WAP (weeks after planting) and summer-squash injury (chlorosis and necrosis of crop foliage) was 6, 14, and 11% from halosulfuron PRE, POST, and PRE fb POST, respectively. Early summer-squash flowering was reduced 32–82% by halosulfuron, resulting in reduced early yields. Dixie was the cultivar most tolerant to halosulfuron. Early flowering of Dixie was reduced 32–36% compared to 32–82% for the other cultivars. Marketable yield of summer squash was reduced 20–30% by all rates of halosulfuron when averaged over all application timings. Marketable yield of Seneca Prolific, Superpik, Dixie, Multipik, and Lemondrop was reduced 0–17% by halosulfuron PRE. Halosulfuron POST or PRE fb POST reduced marketable yield of all summer-squash cultivars by 25–46%. Thus, summer squash was not tolerant of POST halosulfuron; however, Dixie, Multipik, Seneca Prolific, and Superpik exhibited tolerance to halosulfuron PRE.
An experiment was conducted at one location in 1999 and two locations in 2000 to determine the critical weed-free period for peach in North Carolina. The cultivars for the three locations were ‘Contender’, ‘Norman’, and ‘Summerprince’. Weed-free intervals of 0, 3, 6, 9, 12, and 15 wk after peach tree bloom were established. Paraquat at 1.1 kg ai/ha plus nonionic surfactant at 0.25% v/v was applied every 10 d, after treatments were initiated at peach bloom, to maintain weed-free plots. Large crabgrass, hairy vetch, and smooth crabgrass were the primary weeds in Contender. Horseweed, smooth crabgrass, and large crabgrass were the primary weeds in Norman. Bermudagrass, smooth pigweed, and common lambsquarters were the primary weeds in Summerprince. No differences in trunk cross-sectional area were observed between the weed-free periods. Maintaining the orchard floor weed-free for 12 wk after peach tree bloom resulted in the greatest fruit size (individual fruit weight and diameter), total yield, and fruit number.