We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern ∼ 50 per cent of the sky (20,630 deg2); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of ∼1 rad m−2. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20″ and a typical RMS sensitivity in Stokes Q or U of 18 μJy beam−1. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38 per cent of the sky. POSSUM will enable the discovery and detailed investigation of magnetized phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
We present the Evolutionary Map of the Universe (EMU) survey conducted with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU aims to deliver the touchstone radio atlas of the southern hemisphere. We introduce EMU and review its science drivers and key science goals, updated and tailored to the current ASKAP five-year survey plan. The development of the survey strategy and planned sky coverage is presented, along with the operational aspects of the survey and associated data analysis, together with a selection of diagnostics demonstrating the imaging quality and data characteristics. We give a general description of the value-added data pipeline and data products before concluding with a discussion of links to other surveys and projects and an outline of EMU’s legacy value.
We measured the harmonic-space power spectrum of galaxy clustering auto-correlation from the Evolutionary Map of the Universe Pilot Survey 1 data (EMU PS1) and its cross-correlation with the lensing convergence map of cosmic microwave background (CMB) from Planck Public Release 4 at the linear scale range from l = 2 to 500. We applied two flux density cuts at 0.18 and 0.4mJy on the radio galaxies observed at 944MHz and considered two source detection algorithms. We found the auto-correlation measurements from the two algorithms at the 0.18mJy cut to deviate for l ≳ 250 due to the different criteria assumed on the source detection and decided to ignore data above this scale. We report a cross-correlation detection of EMU PS1 with CMB lensing at ∼5.5σ, irrespective of flux density cut. In our theoretical modelling we considered the SKADS and T-RECS redshift distribution simulation models that yield consistent results, a linear and a non-linear matter power spectrum, and two linear galaxy bias models. That is a constant redshift-independent galaxy bias b(z) = bg and a constant amplitude galaxy bias b(z) = bg/D(z). By fixing a cosmology model and considering a non-linear matter power spectrum with SKADS, we measured a constant galaxy bias at 0.18mJy (0.4mJy) with and a constant amplitude bias with . When σ8 is a free parameter for the same models at 0.18mJy (0.4mJy) with the constant model we found , while with the constant amplitude model we measured , respectively. Our results agree at 1σ with the measurements from Planck CMB and the weak lensing surveys and also show the potential of cosmology studies with future radio continuum survey data.
We present a re-discovery of G278.94+1.35a as possibly one of the largest known Galactic supernova remnants (SNRs) – that we name Diprotodon. While previously established as a Galactic SNR, Diprotodon is visible in our new Evolutionary Map of the Universe (EMU) and GaLactic and Extragalactic All-sky MWA (GLEAM) radio continuum images at an angular size of $3{{{{.\!^\circ}}}}33\times3{{{{.\!^\circ}}}}23$, much larger than previously measured. At the previously suggested distance of 2.7 kpc, this implies a diameter of 157$\times$152 pc. This size would qualify Diprotodon as the largest known SNR and pushes our estimates of SNR sizes to the upper limits. We investigate the environment in which the SNR is located and examine various scenarios that might explain such a large and relatively bright SNR appearance. We find that Diprotodon is most likely at a much closer distance of $\sim$1 kpc, implying its diameter is 58$\times$56 pc and it is in the radiative evolutionary phase. We also present a new Fermi-LAT data analysis that confirms the angular extent of the SNR in gamma rays. The origin of the high-energy emission remains somewhat puzzling, and the scenarios we explore reveal new puzzles, given this unexpected and unique observation of a seemingly evolved SNR having a hard GeV spectrum with no breaks. We explore both leptonic and hadronic scenarios, as well as the possibility that the high-energy emission arises from the leftover particle population of a historic pulsar wind nebula.
Emerging evidence suggests that routine physical activity may improve exercise capacity, long-term outcomes, and quality of life in individuals with Fontan circulation. Despite this, it is unclear how active these individuals are and what guidance they receive from medical providers regarding physical activity. The aim of this study was to survey Fontan patients on personal physical activity behaviours and their cardiologist-directed physical activity recommendations to set a baseline for future targeted efforts to improve this.
Methods:
An electronic survey assessing physical activity habits and cardiologist-directed guidance was developed in concert with content experts and patients/parents and shared via a social media campaign with Fontan patients and their families.
Results:
A total of 168 individuals completed the survey. The median age of respondents was 10 years, 51% identifying as male. Overall, 21% of respondents spend > 5 hours per week engaged in low-exertion activity and only 7% spend > 5 hours per week engaged in high-exertion activity. In all domains questioned, pre-adolescents reported higher participation rates than adolescents. Nearly half (43%) of respondents reported that they do not discuss activity recommendations with their cardiologist.
Conclusions:
Despite increasing evidence over the last two decades demonstrating the benefit of exercise for individuals living with Fontan circulation, only a minority of patients report engaging in significant amounts of physical activity or discussing activity goals with their cardiologist. Specific, individualized, and actionable education needs to be provided to patients, families, and providers to promote and support regular physical activity in this patient population.
We present radio observations of the galaxy cluster Abell S1136 at 888 MHz, using the Australian Square Kilometre Array Pathfinder radio telescope, as part of the Evolutionary Map of the Universe Early Science program. We compare these findings with data from the Murchison Widefield Array, XMM-Newton, the Wide-field Infrared Survey Explorer, the Digitised Sky Survey, and the Australia Telescope Compact Array. Our analysis shows the X-ray and radio emission in Abell S1136 are closely aligned and centered on the Brightest Cluster Galaxy, while the X-ray temperature profile shows a relaxed cluster with no evidence of a cool core. We find that the diffuse radio emission in the centre of the cluster shows more structure than seen in previous low-resolution observations of this source, which appeared formerly as an amorphous radio blob, similar in appearance to a radio halo; our observations show the diffuse emission in the Abell S1136 galaxy cluster contains three narrow filamentary structures visible at 888 MHz, between $\sim$80 and 140 kpc in length; however, the properties of the diffuse emission do not fully match that of a radio (mini-)halo or (fossil) tailed radio source.
We present source detection and catalogue construction pipelines to build the first catalogue of radio galaxies from the 270 $\rm deg^2$ pilot survey of the Evolutionary Map of the Universe (EMU-PS) conducted with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The detection pipeline uses Gal-DINO computer vision networks (Gupta et al. 2024, PASA, 41, e001) to predict the categories of radio morphology and bounding boxes for radio sources, as well as their potential infrared host positions. The Gal-DINO network is trained and evaluated on approximately 5 000 visually inspected radio galaxies and their infrared hosts, encompassing both compact and extended radio morphologies. We find that the Intersection over Union (IoU) for the predicted and ground-truth bounding boxes is larger than 0.5 for 99% of the radio sources, and 98% of predicted host positions are within $3^{\prime \prime}$ of the ground-truth infrared host in the evaluation set. The catalogue construction pipeline uses the predictions of the trained network on the radio and infrared image cutouts based on the catalogue of radio components identified using the Selavy source finder algorithm. Confidence scores of the predictions are then used to prioritise Selavy components with higher scores and incorporate them first into the catalogue. This results in identifications for a total of 211 625 radio sources, with 201 211 classified as compact and unresolved. The remaining 10 414 are categorised as extended radio morphologies, including 582 FR-I, 5 602 FR-II, 1 494 FR-x (uncertain whether FR-I or FR-II), 2 375 R (single-peak resolved) radio galaxies, and 361 with peculiar and other rare morphologies. Each source in the catalogue includes a confidence score. We cross-match the radio sources in the catalogue with the infrared and optical catalogues, finding infrared cross-matches for 73% and photometric redshifts for 36% of the radio galaxies. The EMU-PS catalogue and the detection pipelines presented here will be used towards constructing catalogues for the main EMU survey covering the full southern sky.
Chronic post-stroke pain (CPSP), Dejerine Roussy syndrome, is a specific injury resulting from usually ischemic stroke. Diagnosing and discovering direct mechanisms are still works in process. The syndrome is also hard to differentiate among other similar ones due to the varying symptomatic responses in individuals. Many different therapy processes and management systems are being studied to find an efficient and safe way to reduce the pain in individuals with CPSP. Seen in the treatments and management section, some techniques are invasive, while others are not. Transcranial stimulation is invasive. It leads to many other complications that come with surgical procedures. Other methods are not as invasive and have some existing evidence of reducing pain. Many of the treatments and management of CPSP still need more evidence to fully figure out their mechanisms of action and the consistent effects of the treatments. The different methods appear to have promising results and future research can help to uncover that potential.
In times of health reform, fiscal restraint and population aging, it becomes increasingly imperative to understand what must be done to better link research and policy in the health area. In this paper, the major determinants of healthy aging are discussed in terms of current conceptual frameworks of health, measurement, methodologies, and data sources. In order to maximize the benefit for the health of current and future Canadian seniors, policy recommendations are made to Statistics Canada, Health Canada, and the Seniors Independence Research Program (SIRP) which cover a range of issues related to measurement and data sources, health services, health status, economic status, and education.
With the advent of deep, all-sky radio surveys, the need for ancillary data to make the most of the new, high-quality radio data from surveys like the Evolutionary Map of the Universe (EMU), GaLactic and Extragalactic All-sky Murchison Widefield Array survey eXtended, Very Large Array Sky Survey, and LOFAR Two-metre Sky Survey is growing rapidly. Radio surveys produce significant numbers of Active Galactic Nuclei (AGNs) and have a significantly higher average redshift when compared with optical and infrared all-sky surveys. Thus, traditional methods of estimating redshift are challenged, with spectroscopic surveys not reaching the redshift depth of radio surveys, and AGNs making it difficult for template fitting methods to accurately model the source. Machine Learning (ML) methods have been used, but efforts have typically been directed towards optically selected samples, or samples at significantly lower redshift than expected from upcoming radio surveys. This work compiles and homogenises a radio-selected dataset from both the northern hemisphere (making use of Sloan Digital Sky Survey optical photometry) and southern hemisphere (making use of Dark Energy Survey optical photometry). We then test commonly used ML algorithms such as k-Nearest Neighbours (kNN), Random Forest, ANNz, and GPz on this monolithic radio-selected sample. We show that kNN has the lowest percentage of catastrophic outliers, providing the best match for the majority of science cases in the EMU survey. We note that the wider redshift range of the combined dataset used allows for estimation of sources up to $z = 3$ before random scatter begins to dominate. When binning the data into redshift bins and treating the problem as a classification problem, we are able to correctly identify $\approx$76% of the highest redshift sources—sources at redshift $z > 2.51$—as being in either the highest bin ($z > 2.51$) or second highest ($z = 2.25$).
HIV and severe wasting are associated with post-discharge mortality and hospital readmission among children with complicated severe acute malnutrition (SAM); however, the reasons remain unclear. We assessed body composition at hospital discharge, stratified by HIV and oedema status, in a cohort of children with complicated SAM in three hospitals in Zambia and Zimbabwe. We measured skinfold thicknesses and bioelectrical impedance analysis (BIA) to investigate whether fat and lean mass were independent predictors of time to death or readmission. Cox proportional hazards models were used to estimate the association between death/readmission and discharge body composition. Mixed effects models were fitted to compare longitudinal changes in body composition over 1 year. At discharge, 284 and 546 children had complete BIA and skinfold measurements, respectively. Low discharge lean and peripheral fat mass were independently associated with death/hospital readmission. Each unit Z-score increase in impedance index and triceps skinfolds was associated with 48 % (adjusted hazard ratio 0·52, 95 % CI (0·30, 0·90)) and 17 % (adjusted hazard ratio 0·83, 95 % CI (0·71, 0·96)) lower hazard of death/readmission, respectively. HIV-positive v. HIV-negative children had lower gains in sum of skinfolds (mean difference −1·49, 95 % CI (−2·01, −0·97)) and impedance index Z-scores (–0·13, 95 % CI (−0·24, −0·01)) over 52 weeks. Children with non-oedematous v. oedematous SAM had lower mean changes in the sum of skinfolds (–1·47, 95 % CI (−1·97, −0·97)) and impedance index Z-scores (–0·23, 95 % CI (−0·36, −0·09)). Risk stratification to identify children at risk for mortality or readmission, and interventions to increase lean and peripheral fat mass, should be considered in the post-discharge care of these children.
Seeman, Morris, and Summers misrepresent or misunderstand the arguments we have made, as well as their own previous work. Here, we correct these inaccuracies. We also reiterate our support for hypothesis-driven and evidence-based research.
We present the data and initial results from the first pilot survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers
$270 \,\mathrm{deg}^2$
of an area covered by the Dark Energy Survey, reaching a depth of 25–30
$\mu\mathrm{Jy\ beam}^{-1}$
rms at a spatial resolution of
$\sim$
11–18 arcsec, resulting in a catalogue of
$\sim$
220 000 sources, of which
$\sim$
180 000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here.
The protected Tel-Dor coastal embayment in the eastern Mediterranean preserves an unusually complete stratigraphic record that reveals human–environmental interactions throughout the Holocene. Interpretation of new seismic profiles collected from shallow marine geophysical transects across the bay show five seismic units were correlated with stratigraphy and age dates obtained from coastal and shallow-marine sediment cores. This stratigraphic framework permits a detailed reconstruction of the coastal system over the last ca. 77 ka as well as an assessment of environmental factors that influenced some dimensions of past coastal societies. The base of the boreholes records lowstand aeolian deposits overlain by wetland sediments that were subsequently flooded by the mid-Holocene transgression. The earliest human settlements are submerged Pottery Neolithic (8.25–7 ka) structures and tools, found immediately above the wetland deposits landward of a submerged aeolianite ridge at the mouth of the bay. The wetland deposits and Pottery Neolithic settlement remains are buried by coastal sand that records a middle Holocene sea-level rise ca. 7.6–6.5 ka. Stratigraphic and geographic relationships suggest that these coastal communities were displaced by sea-level transgression. These findings demonstrate how robust integration of different data sets can be used to reconstruct the geomorphic evolution of coastal settings as well as provide an important addition to the nature of human–landscape interaction and cultural development.
Wrongful convictions are an increasing salient feature of criminal justice discourse in the United States. Many states have adopted reforms to mitigate the likelihood of wrongful convictions, discover errors, and provide redress in the wake of exonerations, yet we know little about why some are seemingly more committed to reducing such errors than others. We argue that public opinion is consequential for policy reform, but its effects are contingent on the electoral vulnerability of state lawmakers. We also suggest that advocacy organizations play a critical role in policy adoption. Incorporating data from all 50 states from 1989 to 2018, we investigate the adoption of five types of wrongful conviction reforms: (1) changes to eyewitness identification practices, (2) mandatory recording of interrogations, (3) the preservation of biological evidence, (4) access to postconviction DNA testing, and (5) exoneree compensation. Our results highlight a more nuanced view of how public opinion shapes policy.
Neonicotinoid insecticides are used to reduce crop damage caused by insect pests, but sublethal levels could affect development and reproduction in nontarget insects, such as monarch butterflies (Danaus plexippus) (Lepidoptera: Nymphalidae). To investigate the impact of field-realistic concentrations of the neonicotinoid clothianidin on monarch butterflies, we grew swamp milkweed (Asclepias incarnata) (Apocynaceae) in either low (15 ng/g of soil) or high (25 ng/g of soil) levels of clothianidin, or in a control (0 ng/g), then raised monarchs on the milkweed. Morphological traits of monarch caterpillars were measured during development and, once they eclosed, were mated as adults to quantify egg size and mass and the number of eggs laid. Although the effects of the treatment had complex effects on caterpillar length, width and volume of late-instar caterpillars were negatively affected. Fifth-instar caterpillars from the high-dose insecticide treatment had lower mass than other groups. Adult monarch butterflies raised on treated milkweed were larger than controls, but clothianidin exposure did not affect the number of eggs laid or egg size. Although the magnitude of the effect depends on clothianidin concentration, our results suggest that exposure to clothianidin during early life can impact monarch caterpillar development but is unlikely to reduce female reproductive output.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
Under stress, corals and foraminifera may eject or consume their algal symbionts (“bleach”), which can increase mortality. How bleaching relates to species viability over warming events is of great interest given current global warming. We use size-specific isotope analyses and abundance counts to examine photosymbiosis and population dynamics of planktonic foraminifera across the Paleocene–Eocene thermal maximum (PETM, ~56 Ma), the most severe Cenozoic global warming event. We find variable responses of photosymbiotic associations across localities and species. In the NE Atlantic (DSDP Site 401) PETM, photosymbiotic clades (acarininids and morozovellids) exhibit collapsed size-δ13C gradients indicative of reduced photosymbiosis, as also observed in Central Pacific (ODP Site 1209) and Southern Ocean (ODP Site 690) acarininids. In contrast, we find no significant loss of size-δ13C gradients on the New Jersey shelf (Millville) or in Central Pacific morozovellids. Unlike modern bleaching-induced mass mortality, populations of photosymbiont-bearing planktonic foraminifera increased in relative abundance during the PETM. Multigenerational adaptive responses, including flexibility in photosymbiont associations and excursion taxon evolution, may have allowed some photosymbiotic foraminifera to thrive. We conclude that deconvolving the effects of biology on isotope composition on a site-by-site basis is vital for environmental reconstructions.