We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mamyshev oscillators (MOs) demonstrate extraordinarily superior performance compared with fiber laser counterparts. However, the realization of a fully fiberized, monolithic laser system without pulse degradation remains a key challenge. Here we present a high-energy MO using large mode area Yb-doped fiber and fiber-integrable interferometric super-Gaussian spectral filters that directly generates a nearly diffraction-limited beam with approximately 9.84 W average power and 533 nJ pulse energy. By implementing pre-chirp management with anti-resonant hollow-core fiber (AR-HCF), the adverse effects of super-Gaussian filtering on pulse quality are effectively mitigated, enabling pulse compression to 1.23 times the transform limit. Furthermore, AR-HCF is employed to provide negative dispersion to compensate for the positive chirp of output pulses, resulting in approximately 37 fs de-chirped pulses with approximately 10 MW peak power. This approach represents a significant step toward the development of monolithic fiber lasers capable of generating and flexible delivery of sub-50-fs pulses with tens of megawatts peak power.
This study aimed to investigate the effects of esketamine (Esk) combined with dexmedetomidine (Dex) on postoperative delirium (POD) and quality of recovery (QoR) in elderly patients undergoing thoracoscopic radical lung cancer surgery.
Methods
In this prospective, randomized, and controlled study, 172 elderly patients undergoing thoracoscopic radical lung cancer surgery were divided into two groups: the Esk + Dex group (n = 86) and the Dex group a (n = 86). The primary outcome was the incidence of POD within 7 days after surgery and the overall Quality of Recovery−15 (QoR − 15) scores within 3 days after surgery. Secondary outcomes included postoperative adverse reactions, extubation time, PACU stay, and hospitalization time. Serum levels of IL-6, IL-10, S100β protein, NSE, CD3+, CD4+, and CD8+ were detected from T0 to T5.
Results
Compared with the Dex group, the incidence of POD in the Esk + Dex group was significantly lower at 7 days after surgery (14.6% vs 30.9%; P = 0.013). The QoR − 15 score was significantly increased 3 days after surgery (P < 0.01). Levels of IL-6 and CD8+ were significantly decreased, and IL − 10 levels were significantly increased at T1-T2 (P < 0.05). At T1-T4, NSE levels were significantly decreased, while CD3+ and CD4+/CD8+ values were significantly increased (P < 0.01). At T1-T5, serum S100β protein concentration decreased significantly, and CD4+ value increased significantly (P < 0.01). The incidence of nausea/vomiting and hyperalgesia decreased significantly 48 hours after surgery (P < 0.01). The duration of extubation, PACU stay, and postoperative hospitalization were significantly shortened.
Conclusions
Esketamine combined with dexmedetomidine can significantly reduce the POD incidence and improve the QoR in patients undergoing thoracoscopic radical lung cancer surgery, which may be related to the improvement of cellular immune function.
A comprehensive direct numerical simulation of electroconvection (EC) turbulence caused by strong unipolar charge injection in a two-dimensional cavity is performed. The EC turbulence has strong fluctuations and intermittency in the closed cavity. Several dominant large-scale structures are found, including two vertical main rolls and a single primary roll. The flow mode significantly influences the charge transport efficiency. A nearly $Ne \sim T^{1/2}$ scaling stage is observed, and the optimal $Ne$ increment is related to the mode with two vertical rolls, while the single roll mode decreases the charge transport efficiency. As the flow strength increases, EC turbulence transitions from an electric force-dominated mode to an inertia-dominated mode. The former utilizes the Coulomb force more effectively and allocates more energy to convection. The vertical mean profiles of charge, electric field and energy budget provide intuitive information on the spatial energy distribution. With the aid of the energy-box technique, a detailed energy transport evolution is illustrated with changing electric Rayleigh numbers. This exploration of EC turbulence can help explain more complicated electrokinetic turbulence mechanisms and the successful utilization of Fourier mode decomposition and energy-box techniques is expected to benefit future EC studies.
This study assessed the efficacy of ThinPrep cytologic test and human papillomavirus (HPV) co-test in cervical cancer screening during pregnancy. A cohort of 8,712 pregnant women from Ren Ji Hospital participated in the study. Among them, 601 (6.90%) tested positive for high-risk HPV (HR-HPV) and 38 (0.44%) exhibited abnormal cytology results (ASCUS+). Following positive HR-HPV findings, 423 patients underwent colposcopy, and 114 individuals suspected of having high-grade squamous intraepithelial lesion and cervical cancer (HSIL+) underwent cervical biopsy. Histological examination revealed 60 cases of normal pathology (52.63%), 35 cases of low‐grade squamous intraepithelial lesion (30.70%), 17 cases of HSIL (14.91%), and 2 cases of cervical cancer (1.75%). The incidence of HSIL+ in HPV 16/18 group was significantly higher than that in non-HPV16/18 group (10.53% vs. 6.14%, P < 0.05). Subsequent evaluation of the clinical performance of cytology alone, primary HPV screening, and co-testing for HSIL+ detection revealed that the HSIL+ detection rate was lowest with cytology alone. These findings suggest that HPV testing, either alone or combined with cytology, presents an efficient screening strategy for pregnant women, underscoring the potential for improved sensitivity in cervical cancer screening during pregnancy. The significantly higher incidence of HSIL+ in the HPV16/18 group emphasizes the importance of genotype-specific considerations.
The pandemic caused by severe acute respiratory syndrome coronavirus 2 is sweeping the world, threatening millions of lives and drastically altering our ways of living. According to current studies, failure to either activate or eliminate inflammatory responses timely and properly at certain stages could result in the progression of the disease. In other words, robust immune responses to coronavirus disease 2019 (COVID-19) are critical. However, they do not theoretically present in some special groups of people, including the young, the aged, patients with autoimmunity or cancer. Differences also do occur between men and women. Our immune system evolves to ensure delicate coordination at different stages of life. The innate immune cells mainly consisted of myeloid lineage cells, including neutrophils, basophils, eosinophils, dendritic cells and mast cells; they possess phagocytic capacity to different degrees at different stages of life. They are firstly recruited upon infection and may activate the adaptive immunity when needed. The adaptive immune cells, on the other way, are comprised mainly of lymphoid lineages. As one grows up, the adaptive immunity matures and expands its memory repertoire, accompanied by an adjustment in quantity and quality. In this review, we would summarise and analyse the immunological characteristics of these groups from the perspective of the immune system ‘evolution’ as well as ‘revolution’ that has been studied and speculated so far, which would aid the comprehensive understanding of COVID-19 and personalised-treatment strategy.
This study examines the international performance of emerging economy multinational enterprises (EMNEs) from a strategic configuration perspective. We propose that the strategic patterns of EMNEs that deliver growth and/or profitability are characterized by different configurations of environment, strategy, and managerial resource factors. Therefore, identifying and assessing strategic configurations is key to understanding EMNEs’ international performance. Employing fuzzy-set qualitative comparative analysis, we analyze a multi-sourced dataset of Chinese firms’ outward investment and identify multiple equifinal strategic configurations that are associated with superior international performance in terms of sales growth and/or profitability. These findings inform the development of a taxonomy of EMNEs’ strategic configurations corresponding with three performance groups, namely profitable growth, profitable niche, and poor performers.
Echinococcus granulosus sensu lato has complex defence mechanisms that protect it from the anti-parasitic immune response for long periods. Echinococcus granulosus cyst fluid (EgCF) is involved in the immune escape. Nevertheless, whether and how EgCF modulates the inflammatory response in macrophages remains poorly understood. Here, real-time polymerase chain reaction and enzyme-linked immunosorbent assay revealed that EgCF could markedly attenuate the lipopolysaccharide (LPS)-induced production of pro-inflammatory factors including tumour necrosis factor-α, interleukin (IL)-12 and IL-6 but increase the expression of IL-10 at mRNA and protein levels in mouse peritoneal macrophages and RAW 264.7 cells. Mechanically, western blotting and immunofluorescence assay showed that EgCF abolished the activation of nuclear factor (NF)-κB p65, p38 mitogen-activated protein kinase (MAPK) and ERK1/2 signalling pathways by LPS stimulation in mouse macrophages. EgCF's anti-inflammatory role was at least partly contributed by promoting proteasomal degradation of the critical adaptor TRAF6. Moreover, the EgCF-promoted anti-inflammatory response and TRAF6 proteasomal degradation were conserved in human THP-1 macrophages. These findings collectively reveal a novel mechanism by which EgCF suppresses inflammatory responses by inhibiting TRAF6 and the downstream activation of NF-κB and MAPK signalling in both human and mouse macrophages, providing new insights into the molecular mechanisms underlying the E. granulosus-induced immune evasion.
The dependence of fishbone cycle on energetic particle intensity has been investigated in EAST low-magnetic-shear plasmas. It is observed that the fishbone mode growth rate, saturation amplitude as well as fishbone cycle frequency clearly increase with increasing neutral beam injection (NBI) power. Moreover, enhanced electron density and temperature perturbations as well as energetic particle loss were observed with greater injected NBI power. Simulation results using M3D-K code show that as the NBI power increases, the resonant frequency and the energy of the resonant particles become higher, and the saturation amplitude of the mode also changes, due to the non-perturbative energetic particle contribution. The relationship between the calculated energetic particle pressure ratio and fishbone cycle frequency is obtained as ${f_{\textrm{FC}}} = 2.2{(1000{\beta _{\textrm{ep,calc}}} - 0.1)^{5.9 \pm 0.5}}$. Results consistent with the experimental observations have been achieved based on a predator–prey model.
Differences in pipe wall microstructure at various positions throughout the wall thickness of high strength aluminum alloy thick-wall pipes produced by reverse hot extrusion were investigated. The microstructures of the inner wall (IW), outer wall (OW), and half wall (HW) were compared. Further, heterogeneity in the mechanical properties of the pipe throughout the wall thickness was also investigated. Results revealed that the volume fraction of precipitation was highest at the HW position because of the higher Zn and Mg contents. Further, approximately 26% of grains were recrystallized in the OW position due to the greater strain during extrusion, while the recrystallization fractions of the IW and HW positions were 13% and 21%, respectively. The effects of precipitation strengthening and deformation strengthening contribute to the highest ultimate tensile strength and Vickers hardness of the HW position, and to the higher elongation of the IW and OW positions.
There is increasing evidence for shared genetic susceptibility between schizophrenia and bipolar disorder. Although genetic variants only convey subtle increases in risk individually, their combination into a polygenic risk score constitutes a strong disease predictor.
Aims
To investigate whether schizophrenia and bipolar disorder polygenic risk scores can distinguish people with broadly defined psychosis and their unaffected relatives from controls.
Method
Using the latest Psychiatric Genomics Consortium data, we calculated schizophrenia and bipolar disorder polygenic risk scores for 1168 people with psychosis, 552 unaffected relatives and 1472 controls.
Results
Patients with broadly defined psychosis had dramatic increases in schizophrenia and bipolar polygenic risk scores, as did their relatives, albeit to a lesser degree. However, the accuracy of predictive models was modest.
Conclusions
Although polygenic risk scores are not ready for clinical use, it is hoped that as they are refined they could help towards risk reduction advice and early interventions for psychosis.
Declaration of interest
R.M.M. has received honoraria for lectures from Janssen, Lundbeck, Lilly, Otsuka and Sunovian.
Assessing metal contamination of soils has been a difficult task because the metal concentration in soil is not directly correlated to its potential effects. We review an approach, termed the Terrestrial Biotic Ligand Model (TBLM), in which partitioning of metal from soil to soil solution is modelled and the metal in solution interacts with an organism, the biotic ligand, to cause toxicity. The toxicity is modulated by other cations in the soil solution, principally H+, Ca2+, and Mg2+. New results for the model using Ni as the toxic species and barley root elongation as the biological response are presented.
A range of endophenotypes characterise psychosis, however there has been limited work understanding if and how they are inter-related.
Methods
This multi-centre study includes 8754 participants: 2212 people with a psychotic disorder, 1487 unaffected relatives of probands, and 5055 healthy controls. We investigated cognition [digit span (N = 3127), block design (N = 5491), and the Rey Auditory Verbal Learning Test (N = 3543)], electrophysiology [P300 amplitude and latency (N = 1102)], and neuroanatomy [lateral ventricular volume (N = 1721)]. We used linear regression to assess the interrelationships between endophenotypes.
Results
The P300 amplitude and latency were not associated (regression coef. −0.06, 95% CI −0.12 to 0.01, p = 0.060), and P300 amplitude was positively associated with block design (coef. 0.19, 95% CI 0.10–0.28, p < 0.001). There was no evidence of associations between lateral ventricular volume and the other measures (all p > 0.38). All the cognitive endophenotypes were associated with each other in the expected directions (all p < 0.001). Lastly, the relationships between pairs of endophenotypes were consistent in all three participant groups, differing for some of the cognitive pairings only in the strengths of the relationships.
Conclusions
The P300 amplitude and latency are independent endophenotypes; the former indexing spatial visualisation and working memory, and the latter is hypothesised to index basic processing speed. Individuals with psychotic illnesses, their unaffected relatives, and healthy controls all show similar patterns of associations between endophenotypes, endorsing the theory of a continuum of psychosis liability across the population.
Little is known about the joint mental health effects of air pollution and tobacco smoking in low- and middle-income countries.
Aims
To investigate the effects of exposure to ambient fine particulate matter pollution (PM2.5) and smoking and their combined (interactive) effects on depression.
Method
Multilevel logistic regression analysis of baseline data of a prospective cohort study (n=41785). The 3-year average concentrations of PM2.5 were estimated using US National Aeronautics and Space Administration satellite data, and depression was diagnosed using a standardised questionnaire. Three-level logistic regression models were applied to examine the associations with depression.
Results
The odds ratio (OR) for depression was 1.09 (95% CI 1.01–1.17) per 10 μg/m3 increase in ambient PM2.5, and the association remained after adjusting for potential confounding factors (adjusted OR = 1.10, 95% CI 1.02–1.19). Tobacco smoking (smoking status, frequency, duration and amount) was also significantly associated with depression. There appeared to be a synergistic interaction between ambient PM2.5 and smoking on depression in the additive model, but the interaction was not statistically significant in the multiplicative model.
Conclusions
Our study suggests that exposure to ambient PM2.5 may increase the risk of depression, and smoking may enhance this effect.
Autophagy process in Toxoplasma gondii plays a vital role in regulating parasite survival or death. Thus, once having an understanding of certain effects of autophagy on the transformation of tachyzoite to bradyzoite this will allow us to elucidate the function of autophagy during parasite development. Herein, we used three TgAtg proteins involved in Atg8 conjugation system, TgAtg3, TgAtg7 and TgAtg8 to evaluate the autophagy level in tachyzoite and bradyzoite of Toxoplasma in vitro based on Pru TgAtg7-HA transgenic strains. We showed that both TgAtg3 and TgAtg8 were expressed at a significantly lower level in bradyzoites than in tachyzoites. Importantly, the number of parasites containing fluorescence-labelled TgAtg8 puncta was significantly reduced in bradyzoites than in tachyzoites, suggesting that autophagy is downregulated in Toxoplasma bradyzoite in vitro. Moreover, after treatment with drugs, bradyzoite-specific gene BAG1 levels decreased significantly in rapamycin-treated bradyzoites and increased significantly in 3-MA-treated bradyzoites in comparison with control bradyzoites, indicating that Toxoplasma autophagy is involved in the transformation of tachyzoite to bradyzoite in vitro. Together, it is suggested that autophagy may serve as a potential strategy to regulate the transformation.
An epigenetic mechanism has been suggested to explain the effects of the maternal diet on the development of disease in offspring. The present study aimed to observe the effects of a maternal high-lipid, high-energy (HLE) diet on the DNA methylation pattern of male offspring in mice. Female C57BL/6J mice were fed an HLE diet during gestation and lactation. The genomic DNA methylations at promoter sites of genes in the liver, mRNA and protein levels of selected genes related to lipid and glucose metabolism were measured by microarray, real-time PCR and Western blot. The results indicated that the percentage of methylated DNA in offspring from dams that were fed an HLE diet was significantly higher than that from dams that were fed a chow diet, and most of these genes were hypermethylated in promoter regions. The nuclear protein content and mRNA levels of hypermethylated genes, such as PPARγ and liver X receptor α (LXRα), were decreased significantly in offspring in the HLE group. The results suggested that the DNA methylation profile in adult offspring livers was changed by the maternal HLE diet during gestation and lactation.
This study presented a novel fabrication process for TiNi thin films by vacuum diffusion technology using reactive Ni/Ti/Ni multilayer thin films. The sandwiched thin films were prepared by chemical nickel plating. Ni/Ti/Ni multilayer films were heat treated for various diffusion times and temperatures and the influences of the temperature and diffusion time on the interdiffusion behavior of the Ti–Ni system were researched in detail. The results showed that a homogeneous TiNi thin film was obtained at 1173 K with a diffusion time of 4 h. Moreover, the formation sequence of the intermetallics in the Ti–Ni diffusion system was investigated by thermodynamic analysis and experiment. It was found that three compounds – TiNi3, Ti2Ni, and TiNi – formed in the diffusion process at the Ti/Ni interfaces. More importantly, the nucleation of TiNi3 and Ti2Ni was prior to that of TiNi because of the lower reaction Gibbs free energy and increasing interface energy of TiNi3 and Ti2Ni.
X-ray powder diffraction data, unit-cell parameters, and space group for loratadine (C22H23ClN2O2) are reported [a = 28.302(18) Å, b = 4.996(3) Å, c = 29.154(19) Å, β = 109.158(2)°, unit-cell volume V = 3894.25 Å3, Z = 8, and space group C2/c]. All measured lines were indexed and are consistent with the C2/c space group. No detectable impurities were observed.
Systemic Fe overload can contribute to abnormal glucose metabolism and the onset of type 2 diabetes (T2D). Although hepcidin is the master regulator of systemic Fe homeostasis, few studies have systematically evaluated the associations of serum hepcidin concentrations with Fe metabolism parameters and risks for the development of T2D. In this regard, whether hepcidin concentrations are associated with T2D remains controversial. We measured serum hepcidin and ferritin concentrations in a case–control study of 1259 Han Chinese participants to evaluate the possible associations of serum hepcidin concentrations with Fe metabolism parameters and risks of T2D. Individuals with diabetes (n 555) and control participants (n 704) were recruited and serum hepcidin and ferritin concentrations were quantified. Additionally, selected biochemical and anthropometric variables were determined. A logistic regression analysis was performed to evaluate the association of serum hepcidin and ferritin concentrations with T2D. A linear regression analysis was used to test for associations between serum hepcidin and ferritin concentrations and a number of clinical, demographic and diabetes-associated variables. We found that serum hepcidin concentrations correlated with Hb and serum ferritin concentrations. No differences in hepcidin concentrations were found between the group with diabetes and the control group. Hepcidin concentrations were not significantly correlated with T2D risk factors. We also found that serum ferritin concentrations were elevated in individuals with diabetes and were positively correlated with both Hb concentrations and T2D risk factors. The present findings suggest that serum ferritin concentrations correlate with T2D risk factors, while serum hepcidin concentrations are positively associated with Hb and serum ferritin concentrations, but do not correlate with T2D.
Weight loss leading to cachexia is associated with poor treatment response and reduced survival in pancreatic cancer patients. We aim to identify indicators that allow for early detection that will advance our understanding of cachexia and will support targeted anti-cachexia therapies. A total of fifty pancreatic cancer patients were analysed for skeletal muscle and visceral adipose tissue (VAT) changes using computed tomography (CT) scans. These changes were related to physical characteristics, secondary disease states and treatment parameters. Overall, patients lost 1·72 (sd 3·29) kg of muscle and 1·04 (sd 1·08) kg of VAT during the disease trajectory (413 (sd 213) d). After sorting patients into tertiles by rate of VAT and muscle loss, patients losing VAT at > − 0·40 kg/100 d had poorer survival outcomes compared with patients with < − 0·10 kg/100 d of VAT loss (P= 0·020). Patients presenting with diabetes at diagnosis demonstrated significantly more and accelerated VAT loss compared with non-diabetic patients. In contrast, patients who were anaemic at the first CT scan lost significantly more muscle tissue and at accelerated rates compared with non-anaemic patients. Accelerated rates of VAT loss are associated with reduced survival. Identifying associated features of cachexia, such as diabetes and anaemia, is essential for the early detection of cachexia and may facilitate the attenuation of complications associated with cachexia.