We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The poor environmental stability of natural anthocyanin hinders its usefulness in various functional applications. The objectives of the present study were to enhance the environmental stability of anthocyanin extracted from Lycium ruthenicum by mixing it with montmorillonite to form an organic/inorganic hybrid pigment, and then to synthesize allochroic biodegradable composite films by incorporating the hybrid pigment into sodium alginate and test them for potential applications in food testing and packaging. The results of X-ray diffraction, Fourier-transform infrared spectroscopy, and use of the Brunauer–Emmett–Teller method and zeta potential demonstrated that anthocyanin was both adsorbed on the surface and intercalated into the interlayer of montmorillonite via host–guest interaction, and the hybrid pigments obtained allowed good, reversible, acid/base behavior after exposure to HCl and NH3 atmospheres. The composite films containing hybrid pigments had good mechanical properties due to the uniform dispersion of the pigments in a sodium alginate substrate and the formation of hydrogen bonds between them. Interestingly, the composite films also exhibited reversible acidichromism. The as-prepared hybrid pigments in composite films could, therefore, serve simultaneously as a reinforced material and as a smart coloring agent for a polymer substrate.
Following limited clinical exposure during the coronavirus disease 2019 pandemic, a simulation-based platform aimed at providing a unique and safe learning tool was established. The aim was to improve the skills, knowledge and confidence of new ENT doctors.
Method
The course was developed through 5 iterations over 28 months, moving from a half-day session to 2 full-day courses with more scenarios. Participant, faculty and local simulation team feedback drove course development. High-fidelity scenarios were provided, ranging from epistaxis to stridor, using technology including SimMan3 G mannequin, mask-Ed™ and nasendoscopy simulators.
Results
Participant feedback consistently demonstrated that the knowledge and skills acquired enhanced preparedness for working in ENT, with impact being sustained in clinical practice.
Conclusion
Preparing healthcare professionals adequately is essential to enhancing patient safety. This simulation course has been effective in supporting new doctors in ENT and has subsequently been rolled out at a national level.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
The Spoon-billed Sandpiper Calidris pygmaea is a ‘Critically Endangered’ migratory shorebird. The species faces an array of threats in its non-breeding range, making conservation intervention essential. However, conservation efforts are reliant on identifying the species’ key stopover and wintering sites. Using Maximum Entropy models, we predicted Spoon-billed Sandpiper distribution across the non-breeding range, using data from recent field surveys and satellite tracking. Model outputs suggest only a limited number of stopover sites are suitable for migrating birds, with sites in the Yellow Sea and on the Jiangsu coast in China highlighted as particularly important. All the previously known core wintering sites were identified by the model including the Ganges-Brahmaputra Delta, Nan Thar Island and the Gulf of Mottama. In addition, the model highlighted sites subsequently found to be occupied, and pinpointed potential new sites meriting investigation, notably on Borneo and Sulawesi, and in parts of India and the Philippines. A comparison between the areas identified as most likely to be occupied and protected areas showed that very few locations are covered by conservation designations. Known sites must be managed for conservation as a priority, and potential new sites should be surveyed as soon as is feasible to assess occupancy status. Site protection should take place in concert with conservation interventions including habitat management, discouraging hunting, and fostering alternative livelihoods.
We study the formation of fine radial jets during the impact of a compound drop on a smooth solid surface. The disperse-phase droplets are heavier than the outer continuous phase of the main drop and sink to the bottom of the drop before it is released from the nozzle. The droplets often arrange into a regular pattern around the axis of symmetry. This configuration produces narrow high-speed jets aligned with every internal droplet. These radial jets form during the early impulsive phase of the impact, by local focusing of the outer liquid, which is forced into the narrowing wedge under each internal droplet. The pressure-driven flow forces a thin sheet under and around each droplet, which levitates and separates from the solid surface. Subsequently, surface tension re-forms this horizontal sheet into a cylindrical jet, which is typically as narrow as ${\sim}35~\unicode[STIX]{x03BC}\text{m}$, while smaller droplets can produce even thinner jets. We systematically change the number of inner droplets and the properties of the main drop to identify the jetting threshold. The jet speed and thickness are minimally affected by the viscosity of the outer liquid, suggesting pure inertial focusing. The jets emerge at around eight times the drop impact velocity. Jetting stops when the density of the inner droplets approaches that of the continuous phase. The interior droplets are often greatly deformed and broken up into satellites by the outer viscous stretching, through capillary pinch-off or tip streaming.
The COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) project is a large international collaborative effort to analyze individual-level phenotype data from twins in multiple cohorts from different environments. The main objective is to study factors that modify genetic and environmental variation of height, body mass index (BMI, kg/m2) and size at birth, and additionally to address other research questions such as long-term consequences of birth size. The project started in 2013 and is open to all twin projects in the world having height and weight measures on twins with information on zygosity. Thus far, 54 twin projects from 24 countries have provided individual-level data. The CODATwins database includes 489,981 twin individuals (228,635 complete twin pairs). Since many twin cohorts have collected longitudinal data, there is a total of 1,049,785 height and weight observations. For many cohorts, we also have information on birth weight and length, own smoking behavior and own or parental education. We found that the heritability estimates of height and BMI systematically changed from infancy to old age. Remarkably, only minor differences in the heritability estimates were found across cultural–geographic regions, measurement time and birth cohort for height and BMI. In addition to genetic epidemiological studies, we looked at associations of height and BMI with education, birth weight and smoking status. Within-family analyses examined differences within same-sex and opposite-sex dizygotic twins in birth size and later development. The CODATwins project demonstrates the feasibility and value of international collaboration to address gene-by-exposure interactions that require large sample sizes and address the effects of different exposures across time, geographical regions and socioeconomic status.
Laser interaction with an ultra-thin pre-structured target is investigated with the help of both two-dimensional and three-dimensional particle-in-cell simulations. With the existence of a periodic structure on the target surface, the laser seems to penetrate through the target at its fundamental frequency even if the plasma density of the target is much higher than the laser’s relativistically critical density. The particle-in-cell simulations show that the transmitted laser energy behind the pre-structured target is increased by about two orders of magnitude compared to that behind the flat target. Theoretical analyses show that the transmitted energy behind the pre-structured target is actually re-emitted by electron ‘islands’ formed by the surface plasma waves on the target surfaces. In other words, the radiation with the fundamental frequency is actually ‘surface emission’ on the target rear surface. Besides the intensity of the component with the fundamental frequency, the intensity of the high-order harmonics behind the pre-structured target is also much enhanced compared to that behind the flat target. The enhancement of the high-order harmonics is also related to the surface plasma waves generated on the target surfaces.
A multichannel calorimeter system is designed and constructed which is capable of delivering single-shot and broad-band spectral measurement of terahertz (THz) radiation generated in intense laser–plasma interactions. The generation mechanism of backward THz radiation (BTR) is studied by using the multichannel calorimeter system in an intense picosecond laser–solid interaction experiment. The dependence of the BTR energy and spectrum on laser energy, target thickness and pre-plasma scale length is obtained. These results indicate that coherent transition radiation is responsible for the low-frequency component (${<}$1 THz) of BTR. It is also observed that a large-scale pre-plasma primarily enhances the high-frequency component (${>}$3 THz) of BTR.
When a drop impacts on a liquid surface its bottom is deformed by lubrication pressure and it entraps a thin disc of air, thereby making contact along a ring at a finite distance from the centreline. The outer edge of this contact moves radially at high speed, governed by the impact velocity and bottom radius of the drop. Then at a certain radial location an ejecta sheet emerges from the neck connecting the two liquid masses. Herein, we show the formation of an azimuthal instability at the base of this ejecta, in the sharp corners at the two sides of the ejecta. They promote regular radial vorticity, thereby breaking the axisymmetry of the motions on the finest scales. The azimuthal wavenumber grows with the impact Weber number, based on the bottom curvature of the drop, reaching over 400 streamwise streaks around the periphery. This instability occurs first at Reynolds numbers ($Re$) of ${\sim}7000$, but for larger $Re$ is overtaken by the subsequent axisymmetric vortex shedding and their interactions can form intricate tangles, loops or chains.
The Yellow Sea region is of high global importance for waterbird populations, but recent systematic bird count data enabling identification of the most important sites are relatively sparse for some areas. Surveys of waterbirds at three sites on the coast of southern Jiangsu Province, China, in 2014 and 2015 produced peak counts of international importance for 24 species, including seven globally threatened and six Near Threatened species. The area is of particular global importance for the ‘Critically Endangered’ Spoon-billed Sandpiper Calidris pygmaea (peak count across all three study sites: 62 in spring [2015] and 225 in autumn [2014] and ‘Endangered’ Spotted Greenshank Tringa guttifer (peak count across all three study sites: 210 in spring [2014] and 1,110 in autumn [2015]). The southern Jiangsu coast is therefore currently the most important migratory stopover area in the world, in both spring and autumn, for both species. Several serious and acute threats to waterbirds were recorded at these study sites. Paramount is the threat of large-scale land claim which would completely destroy intertidal mudflats of critical importance to waterbirds. Degradation of intertidal mudflat habitats through the spread of invasive Spartina, and mortality of waterbirds by entrapment in nets or deliberate poisoning are also real and present serious threats here. Collisions with, and displacement by, wind turbines and other structures, and industrial chemical pollution may represent additional potential threats. We recommend the rapid establishment of effective protected areas for waterbirds in the study area, maintaining large areas of open intertidal mudflat, and the urgent removal of all serious threats currently faced by waterbirds here.
A drop impacting on a solid surface must push away the intervening gas layer before making contact. This entails a large lubricating air pressure which can deform the bottom of the drop, thus entrapping a bubble under its centre. For a millimetric water drop, the viscous-dominated flow in the thin air layer counteracts the inertia of the drop liquid. For highly viscous drops the viscous stresses within the liquid also affect the interplay between the drop and the gas. Here the drop also forms a central dimple, but its outer edge is surrounded by an extended thin air film, without contacting the solid. This is in sharp contrast with impacts of lower-viscosity drops where a kink in the drop surface forms at the edge of the central disc and makes a circular contact with the solid. Larger drop viscosities make the central air dimple thinner. The thin outer air film subsequently ruptures at numerous random locations around the periphery, when it reaches below 150 nm thickness. This thickness we measure using high-speed two-colour interferometry. The wetted circular contacts expand rapidly, at orders of magnitude larger velocities than would be predicted by a capillary–viscous balance. The spreading velocity of the wetting spots is ${\sim}0.4~\text{m}~\text{s}^{-1}$ independent of the liquid viscosity. This may suggest enhanced slip of the contact line, assisted by rarefied-gas effects, or van der Waals forces in what we call extreme wetting. Myriads of micro-bubbles are captured between the local wetting spots.
The spoon-billed sandpiper Calidris pygmaea is a Critically Endangered shorebird that breeds in the Russian arctic and winters in coastal and estuarine habitats in South-east Asia. We report the first formal estimate of its global population size, combining a mark–resighting estimate of the number of leg-flagged individuals alive in autumn 2014 with an estimate of the proportion of birds with flags from scan surveys conducted during the same period at a migration stop-over site on the Jiangsu coast of China. We estimate that the world breeding population of spoon-billed sandpipers in 2014 was 210–228 pairs and the post-breeding population of all age classes combined was 661–718 individuals. This and related methods have considerable potential for surveillance of the population size of other globally threatened species, especially widely dispersed long-distance migrants.
When a drop impacts onto a solid surface, the lubrication pressure in the air deforms its bottom into a dimple. This makes the initial contact with the substrate occur not at a point but along a ring, thereby entrapping a central disc of air. We use ultra-high-speed imaging, with 200 ns time resolution, to observe the structure of this first contact between the liquid and a smooth solid surface. For a water drop impacting onto regular glass we observe a ring of microbubbles, due to multiple initial contacts just before the formation of the fully wetted outer section. These contacts are spaced by a few microns and quickly grow in size until they meet, thereby leaving behind a ring of microbubbles marking the original air-disc diameter. On the other hand, no microbubbles are left behind when the drop impacts onto molecularly smooth mica sheets. We thereby conclude that the localized contacts are due to nanometric roughness of the glass surface, and the presence of the microbubbles can therefore distinguish between glass with 10 nm roughness and perfectly smooth glass. We contrast this entrapment topology with the initial contact of a drop impacting onto a film of extremely viscous immiscible liquid, where the initial contact appears to be continuous along the ring. Here, an azimuthal instability occurs during the rapid contraction at the triple line, also leaving behind microbubbles. For low impact velocities the nature of the initial contact changes to one initiated by ruptures of a thin lubricating air film.
When a drop impacts on a solid surface, its rapid deceleration is cushioned by a thin layer of air, which leads to the entrapment of a bubble under its centre. For large impact velocities the lubrication pressure in this air layer becomes large enough to compress the air. Herein we use high-speed interferometry, with 200 ns time-resolution, to directly observe the thickness evolution of the air layer during the entire bubble entrapment process. The initial disc radius and thickness shows excellent agreement with available theoretical models, based on adiabatic compression. For the largest impact velocities the air is compressed by as much as a factor of 14. Immediately following the contact, the air disc shows rapid vertical expansion. The radial speed of the surface minima just before contact, can reach 50 times the impact velocity of the drop.
Dysregulation of the striatum and altered corticostriatal connectivity have been associated with psychotic disorders. Social anhedonia has been identified as a predictor for the development of schizophrenia spectrum disorders. The aim of the present study was to examine corticostriatal functional connectivity in individuals with high social anhedonia.
Method.
Twenty-one participants with high social anhedonia score and 30 with low social anhedonia score measured by the Chinese version of the Revised Social Anhedonia Scale were recruited from university undergraduates (age 17–21 years) to undergo resting-state functional MRI scans. Six subdivisions of the striatum in each hemisphere were defined as seeds. Voxel-wise functional connectivity analyses were conducted between each seed and the whole brain voxels, followed by repeated-measures ANOVA for the group effect.
Results.
Participants with high social anhedonia showed hyper-connectivity between the ventral striatum and the anterior cingulate cortex and the insula, and between the dorsal striatum and the motor cortex. Hypo-connectivity in participants with high social anhedonia was also observed between the ventral striatum and the posterior cingulate cortex. Partial correlation analyses further showed that the functional connectivity between the ventral striatum and the prefrontal cortex was associated with pleasure experience and emotional suppression.
Conclusions.
Our findings suggest that altered corticostriatal connectivity can be found in participants with high levels of social anhedonia. Since social anhedonia has been considered a predictor for schizophrenia spectrum disorders, our results may provide novel evidence on the early changes in brain functional connectivity in at-risk individuals.
Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.
A 29-year-old Caucasian female diagnosed with multiple sclerosis (MS) for seven years, presented with a history of headaches and a single episode of new onset seizures. Her physical examination was unremarkable and she was placed on anti-seizure medications. A computed tomography (CT) scan showed a right frontal brain lesion causing minimal mass effect (Figure 1). Magnetic resonance imaging (MRI) revealed a large nonenhancing space occupying lesion in the right frontal lobe, in addition to numerous smaller lesions which were characteristic of MS plaques (Figures 2 & 3). The large lesion was causing mass effect with right to left midline shift (Figures 2, 3A & B). Given the patient’s history, the appearance and unusually large size of the frontal lesion, it was unclear whether it was a demyelinating MS plaque, or an intra-axial tumour.
Although variation in the long-term course of major depressive disorder (MDD) is not strongly predicted by existing symptom subtype distinctions, recent research suggests that prediction can be improved by using machine learning methods. However, it is not known whether these distinctions can be refined by added information about co-morbid conditions. The current report presents results on this question.
Method.
Data came from 8261 respondents with lifetime DSM-IV MDD in the World Health Organization (WHO) World Mental Health (WMH) Surveys. Outcomes included four retrospectively reported measures of persistence/severity of course (years in episode; years in chronic episodes; hospitalization for MDD; disability due to MDD). Machine learning methods (regression tree analysis; lasso, ridge and elastic net penalized regression) followed by k-means cluster analysis were used to augment previously detected subtypes with information about prior co-morbidity to predict these outcomes.
Results.
Predicted values were strongly correlated across outcomes. Cluster analysis of predicted values found three clusters with consistently high, intermediate or low values. The high-risk cluster (32.4% of cases) accounted for 56.6–72.9% of high persistence, high chronicity, hospitalization and disability. This high-risk cluster had both higher sensitivity and likelihood ratio positive (LR+; relative proportions of cases in the high-risk cluster versus other clusters having the adverse outcomes) than in a parallel analysis that excluded measures of co-morbidity as predictors.
Conclusions.
Although the results using the retrospective data reported here suggest that useful MDD subtyping distinctions can be made with machine learning and clustering across multiple indicators of illness persistence/severity, replication with prospective data is needed to confirm this preliminary conclusion.
When a bubble rises to an interface between two immiscible liquids, it can pass through the interface, if this is energetically favourable, i.e. the bubble preferring the side of the interface with the lower air–liquid surface tension. Once the intermediate film between the bubble and the interface has drained sufficiently, the bubble makes contact with the interface, forming a triple-line and producing strong capillary waves which travel around the bubble and can pinch off a satellite on the opposite side, akin to the dynamics in the coalescence cascade. We identify the critical Ohnesorge numbers where such satellites are produced and characterize their sizes. The total transition time scales with the bubble size and differential surface tension, while the satellite pinch-off time scales with the capillary-inertial time of the pool liquid, which originally surrounds the bubble. We also use high-speed video imaging to study the motion of the neck of the contact. For low viscosity we show that it grows in time with a power-law exponent between 0.44 and 0.50, with a prefactor modified by the net sum of the three interfacial tensions. Increasing the viscosity of the receiving liquid drop drastically slows down the motion of the triple-line, when the Ohnesorge number exceeds ${\sim }$0.08. This differs qualitatively from the coalescence of two miscible drops of different viscosities, where the lower viscosity sets the coalescence speed. We thereby propose a strong resistance from the triple-line.
Alterations in gray matter (GM) are commonly observed in schizophrenia. Accumulating studies suggest that the brain changes associated with schizophrenia are distributed rather than focal, involving interconnected networks of areas as opposed to single regions. In the current study we aimed to explore GM volume (GMV) changes in a relatively large sample of treatment-naive first-episode schizophrenia (FES) patients using optimized voxel-based morphometry (VBM) and covariation analysis.
Method
High-resolution T1-weighted images were obtained using 3.0-T magnetic resonance imaging (MRI) from 86 first-episode drug-naive patients with schizophrenia and 86 age- and gender-matched healthy volunteers. Symptom severity was evaluated using the Positive and Negative Syndrome Scale (PANSS). GMV was assessed using optimized VBM and in 16 regions of interest (ROIs), selected on the basis of a previous meta-analysis. The relationships between GMVs in the ROIs were examined using an analysis of covariance (ANCOVA).
Results
The VBM analysis revealed that first-episode patients showed reduced GMV in the hippocampus bilaterally. The ROI analysis identified reductions in GMV in the left inferior frontal gyrus, bilateral hippocampus and right thalamus. The ANCOVA revealed different patterns of regional GMV correlations in patients and controls, including of inter- and intra-insula, inter-amygdala and insula–postcentral gyrus connections.
Conclusions
Schizophrenia involves regional reductions in GMV and changes in GMV covariance in the insula, amygdala and postcentral gyrus. These findings were evident at the onset of the disorder, before treatment, and therefore cannot be attributable to the effects of chronic illness progression or medication.