We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A dual-band dual-polarized wearable antenna that applies to two different operating modes of wireless body area networks is proposed in this letter. The antenna radiates simultaneously in the ISM band at 2.45 and 5.8 GHz. It consists of a rigid button-like radiator and a flexible fabric radiator. At 2.45 GHz, an omnidirectional circularly polarized pattern is radiated by the flexible radiator, which is suitable for the on-body communication. At the same time, a linearly polarized broadside pattern for off-body communication is generated by button radiator at 5.8 GHz. The antenna has been validated in free space and human body environments. The impedance bandwidth at 2.45 and 5.8 GHz are 5% and 35%, and the gain is measured to be 0.15 and 5.95 dBi, respectively. Furthermore, the specific absorption rates are simulated. At 2.45 and 5.8 GHz, the results averaged over 1 g of body tissue are 0.128 and 0.055 W/kg. The maximum value at both bands is below the IEEE C95.3 standard of 1.6 W/kg.
A theoretical framework has been established to investigate the modulational instability of electromagnetic waves in magnetized electron–positron plasmas. The framework is capable of analyzing electromagnetic waves of any intensity and plasmas at any temperature. A fully relativistic hydrodynamic model, incorporating relativistic velocities and thermal effects, is used to describe the relativistic dynamics of particles in plasmas. Under the weakly magnetized approximation, a modified nonlinear Schrödinger equation, governing the dynamics of the envelope of electromagnetic waves in plasmas, is obtained. The growth rate of the modulational instability is then given both theoretically and numerically. By analyzing the dependence of the growth rate on some key physical parameters, the coupled interplay of relativistic effects, ponderomotive forces, thermal effects and magnetic fields on electromagnetic waves can be clarified. The findings demonstrate that specific combinations of physical parameters can significantly enhance modulational instability, providing a theoretical basis for controlling the propagation of electromagnetic waves in plasmas. This framework has broad applicability to most current laser–plasma experiments and high-energy radiation phenomena from stellar surfaces.
The greatest challenge in pressure reconstruction from the measured velocity fields is that the error of material acceleration is significantly contaminated due to error propagation. Particularly for flows with moving boundaries, accurate boundary velocities are difficult to obtain due to error propagation, and a complex boundary processing technique is needed to treat the moving boundaries. The present work proposes a machine-learning-based method to determine the pressure for incompressible flows with moving boundaries. The proposed network consists of two neural networks: one network, named the boundary network, is used to track the Lagrangian boundary points; the other physics-informed neural network, named the flow network, is adopted to approximate the flow fields. These two networks are coupled by imposing boundary conditions. We further propose a new dynamic weight strategy for the loss terms to guarantee convergence and stability. The performance of the proposed method is validated by two examples: the flow over an oscillating cylinder and the flow around a swimming fish. The proposed method can accurately determine the pressure fields and boundary motion from synthetic particle image velocimetry (PIV) flow fields. Moreover, this method can also predict the boundary and pressure at a given instant without supervised data. Finally, this method was applied to reconstruct the pressure from the two-dimensional and three-dimensional PIV velocities of the left ventricle. All of the results indicate that the proposed method can accurately reconstruct the pressure fields for flows with moving boundaries and is a novel method for surface pressure estimation.
The study aimed to determine the patterns of the vestibular and ocular motor findings in cerebellar infarction (CI).
Methods:
We retrospectively analyzed vestibular and ocular motor test results in 23 CI patients and 32 acute unilateral vestibulopathy (AUVP) patients.
Results:
Among CI cases, the posterior inferior cerebellar artery (PICA) was the most commonly affected territory. Vertigo is predominantly observed in patients with infarctions affecting PICA or anterior inferior cerebellar artery (AICA). Lesions involving the superior cerebellar artery (SCA) mainly result in dizziness. Saccadic intrusion and oscillation, abnormal bilateral smooth pursuit (SP) and abnormal saccades were more prevalent in the CI group than in the AUVP group (all p < 0.05). Horizontal saccades were abnormal in 11 patients (47.8%) with CI. All AUVP patients had normal horizontal saccades. Horizontal SP was impaired in 13 patients (56.5%) with CI, with decreased gain toward both sides in 10 and toward 1 side in 3. Impaired horizontal SP was noted in nine patients (28.1%) with AUVP, with decreased gain toward the contralesional side in all cases. A total of 26.3% (5/19) of patients with CI exhibited subjective visual vertical (SVV) deviation toward the affected side and 31.6% (6/19) toward the unaffected side. In patients with AUVP, 70.0% (21/30) showed SVV deviation toward the affected side.
Conclusions:
Vertigo is mainly seen in PICA or AICA infarctions. SCA lesions mostly cause dizziness. Saccadic intrusion and oscillation, abnormal bilateral SP and abnormal saccades contribute to the diagnosis of CI. Moreover, SVV deviation varies depending on the cerebellar structures involved.
This study employs direct numerical simulations to examine the effects of varying backpressure conditions on the turbulent atomisation of impinging liquid jets. Using the incompressible Navier–Stokes equations, and a volume-of-fluid approach enhanced by adaptive mesh refinement and an isoface-based interface reconstruction algorithm, we analyse spray characteristics in the environments with ambient gas densities ranging from 1 to 40 times the atmospheric pressure under five different backpressure scenarios. We investigate the behaviour of turbulent jets, incorporate realistic orifice geometries and identify significant variations in the atomisation patterns depending on backpressure. Two distinct atomisation types emerge, namely jet-sheet-ligament-droplet at lower backpressures and jet-sheet-fragment-droplet at higher ones, alongside a transition from dilute to dense spray patterns. This variation affects the droplet size distribution and spray dynamics, with increased backpressure reducing the spray's spreading angle and breakup length, while increasing the droplet size variation. Furthermore, these conditions promote distributions that induce rapid, nonlinear wavy motion in liquid sheets. Topological analysis of the atomisation field using velocity-gradient tensor invariants reveals significant variations in topology volume fractions across different regions. Downstream, the droplet Sauter mean diameter increases and then stabilises, reflecting the continuous breakup and coalescence processes, notably under higher backpressures. This research underscores the substantial impact of backpressure on impinging-jet atomisation and provides essential insights for nozzle design to optimise droplet distributions.
Palygorskite (Pal) shows great potential for physical, chemical and biological uses due to its colloidal, catalytic and adsorption properties. Pal mines, however, are facing the challenge of low-grade materials (5–15%), making it difficult to use Pal in emerging fields such as new materials, environmental protection and health. Therefore, there is an urgent need to develop an efficient method for separating and purifying Pal to obtain high purity levels. Hence, we have developed a dispersant-assisted rotating liquid film reactor separation strategy based on sodium hexametaphosphate as the dispersant. This strategy utilizes the double electron layer of Pal and the density difference between impurities to achieve effective disaggregation and purification of Pal bundles through the promotion of repulsive driving effects. Under optimal conditions, the purity of Pal can be increased from less than 10% to over 80%. This research presents a novel approach to the efficient refining of low-grade Pal. The crudely purified Pal’s adsorption capacity for methylene blue increased from 84.2 to 256.4 mg g–1.
Kawasaki disease is a systemic vascular disease with an unclear pathophysiology that primarily affects children under the age of five. Research on immune control in Kawasaki disease has been gaining attention. This study aims to apply a bibliometric analysis to examine the present and future directions of immune control in Kawasaki disease.
Methods:
By utilizing the themes “Kawasaki disease,” “Kawasaki syndrome,” and “immune control,” the Web of Science Core Collection database was searched for publications on immune control in Kawasaki disease. This bibliometric analysis was carried out using VOSviewers, CiteSpace, and the R package “bibliometrix.”
Results:
In total, 294 studies on immune control in Kawasaki disease were published in Web of Science Core Collection. The three most significant institutions were Chang Gung University, the University of California San Diego, and Kaohsiung Chang Gung Memorial Hospital. China, the United States, and Japan were the three most important countries. In this research field, Clinical and Experimental Immunology was the top-referred journal, while the New England Journal of Medicine was the most co-cited journal. The Web of Science Core Collection document by McCrindle BW et al. published in 2017 was the most cited reference. Additionally, the author keywords concentrated on “COVID-19,” “SARS-CoV-2,” and “multisystem inflammatory syndrome in children” in recent years.
Conclusion:
The research trends and advancements in immune control in Kawasaki disease are thoroughly summarised in this bibliometric analysis, which is the first to do so. The data indicate recent research frontiers and hot directions, making it easier for researchers to study the immune control of Kawasaki disease.
Human cystic echinococcosis (CE) is a zoonotic disorder triggered by the larval stage of Echinococcus granulosus (E. granulosus) and predominantly occurred in the liver and lungs. The M2 macrophage level is considerably elevated among the liver of patients with hepatic CE and performs an integral function in liver fibrosis. However, the mechanism of CE inducing polarisation of macrophage to an M2 phenotype is unknown. In this study, macrophage was treated with E. granulosus cyst fluid (EgCF) to explore the mechanism of macrophage polarisation. Consequently, the expression of the M2 macrophage and production of anti-inflammatory cytokines increased after 48 h treatment by EgCF. In addition, EgCF promoted polarisation of macrophage to an M2 phenotype by inhibiting the expression of transcriptional factor hypoxia-inducible factor 1-alpha (HIF-1α), which increased the expression of glycolysis-associated genes, including hexokinase 2 (HK2) and pyruvate kinase 2 (PKM2). The HIF-1α agonist ML228 also inhibited the induction of macrophage to an M2 phenotype by EgCF in vitro. Our findings indicate that E. granulosus inhibits glycolysis by suppressing the expression of HIF-1α.
Increasing evidence shows that maternal hyperglycemia inhibits cardiomyocyte (CM) proliferation and promotes cell apoptosis during fetal heart development, which leads to cardiac dysplasia. Accumulating evidence suggests that the overexpression of miR-21 in CMs has a protective role in cardiac function. Therefore, we investigated whether miR-21 can rescue CM injury caused by high glucose. First, we performed biological function analysis of miR-21-5p overexpression in H9c2 cells treated with high glucose. We found that the proliferation of H9c2 cells treated with high glucose decreased significantly and was rescued after overexpression of miR-21-5p. CCK-8 and EdU incorporation assays were performed to assess cell proliferation. The cell proliferation of the miR-21-5p mimic transfection group was improved compared with that of the NC mimic group (*p < 0.05, miR-21-5p mimics vs. NC mimics) when the proliferation of H9c2 cells was reduced by high glucose (****p < 0.0001, high glucose (HG) vs. normal glucose (NG)). Then, we verified the targeted and negative regulation of miR-21-5p on Rhob using a dual-luciferase activity assay and RT-qPCR, respectively. We further demonstrated that miR-21-5p regulates Rhob to rescue the inhibition of CM proliferation induced by high glucose. The CCK-8 results showed that the cell proliferation of the siRNA-Rhob group was higher than that of the NC mimic group (***p < 0.001) and that of the cotransfection group with Up-Rhob plasmids and miR-21-5p mimics was lower than that of the miR-21-5p mimic group (*p < 0.05). Conclusion: Overexpression of miR-21-5p rescues the inhibition of high glucose-induced CM proliferation through regulation of Rhob.
Sichuan cuisine was previously fitted into the Chinese Heart-Healthy Diet (CHH) trial to verify the antihypertensive effect. Whether the modified Sichuan diet lessens cardiovascular disease (CVD) is not fully explored. We aimed to estimate the effects of the Sichuan version of CHH diet (CHH diet-SC) on the 10-year risk of CVD and vascular age. A single-blinded randomised controlled feeding trial was conducted. General CVD prediction model was used in manners of intention-to-treat and per-protocol set. After a 7-d run-in period, fifty-three participants with pre- and grade I hypertension from local communities were randomised and provided with either CHH diet-SC (n 27) or a control diet (n 26) for 4 weeks. Mean absolute and relative estimated CVD risks were reduced by 4·5 % and 27·9 % in the CHH diet-SC group, and the between-group relative risk reduction was 19·5 % (P < 0·001) using linear mixed-effects models. The sensitivity analysis with datasets and models showed consistent results, and pre-specified factors were not associated with the intervention effects. The vascular age of CHH-SC group was theoretically 4·4 years younger than that of the control group after intervention. Compared with a typical diet, adopting the CHH diet-SC over 1 month significantly reduced 10-year CVD risks and vascular ages among local adults with mild hypertension.
Recently, the collisionless pitch-angle scattering for relativistic runaway electrons (REs) in toroidal geometries such as tokamaks was discovered through a full orbit simulation approach (Liu et al., Nucl. Fusion, vol. 56, 2016, p. 064002), and it was then theoretically investigated that a new expression for the magnetic moment, including the second-order corrections, could essentially reproduce the so-called collisionless pitch-angle scattering process (Liu et al., Nucl. Fusion, vol. 58, 2018, p. 106018). In this paper, with synchrotron radiation, extensive numerical verification of the validity of the high-order guiding-centre theory is given for simulations involving REs by incorporating such an expression for the magnetic moment into our particle tracing code. A high-order guiding-centre simulation approach with synchrotron radiation (HGSA) is applied. Synchrotron radiation plays an essential role in the life cycle of REs. The energy of REs first increases and then becomes saturated until the electric field acceleration is balanced by the radiation dissipation. Unfortunately, the process cannot be simulated accurately with the standard guiding-centre model, i.e. the first-order guiding-centre model. Remarkably, it is found that the HGSA can effectively produce the fundamental process of REs. Since the time scale of the energy saturation of REs is close to seconds, the computational cost becomes significant. In order to save costs, it is necessary to estimate the time of energy saturation. An analytical estimate is derived for the time it takes for synchrotron drag to balance an accelerating electric field and the provided formula has been numerically verified. Test calculations reveal that HGSA is favourable for exploiting the dynamics of REs in tokamak plasmas.
Low molecular weight glutenin subunits (LWM-GSs) play a crucial role in determining wheat flour processing quality. In this work, 35 novel LMW-GS genes (32 active and three pseudogenes) from three Aegilops umbellulata (2n = 2x = 14, UU) accessions were amplified by allelic-specific PCR. We found that all LMW-GS genes had the same primary structure shared by other known LMW-GSs. Thirty-two active genes encode 31 typical LMW-m-type subunits. The MZ424050 possessed nine cysteine residues with an extra cysteine residue located in the last amino acid residue of the conserved C-terminal III, which could benefit the formation of larger glutenin polymers, and therefore may have positive effects on dough properties. We have found extensive variations which were mainly resulted from single-nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) among the LMW-GS genes in Ae. umbellulata. Our results demonstrated that Ae. umbellulata is an important source of LMW-GS variants and the potential value of the novel LMW-GS alleles for wheat quality improvement.
Gut microbiome and dietary patterns have been suggested to be associated with depression/anxiety. However, limited effort has been made to explore the effects of possible interactions between diet and microbiome on the risks of depression and anxiety.
Methods
Using the latest genome-wide association studies findings in gut microbiome and dietary habits, polygenic risk scores (PRSs) analysis of gut microbiome and dietary habits was conducted in the UK Biobank cohort. Logistic/linear regression models were applied for evaluating the associations for gut microbiome-PRS, dietary habits-PRS, and their interactions with depression/anxiety status and Patient Health Questionnaire (PHQ-9)/Generalized Anxiety Disorder-7 (GAD-7) score by R software.
Results
We observed 51 common diet–gut microbiome interactions shared by both PHQ score and depression status, such as overall beef intake × genus Sporobacter [hurdle binary (HB)] (PPHQ = 7.88 × 10−4, Pdepression status = 5.86 × 10−4); carbohydrate × genus Lactococcus (HB) (PPHQ = 0.0295, Pdepression status = 0.0150). We detected 41 common diet–gut microbiome interactions shared by GAD score and anxiety status, such as sugar × genus Parasutterella (rank normal transformed) (PGAD = 5.15 × 10−3, Panxiety status = 0.0347); tablespoons of raw vegetables per day × family Coriobacteriaceae (HB) (PGAD = 6.02 × 10−4, Panxiety status = 0.0345). Some common significant interactions shared by depression and anxiety were identified, such as overall beef intake × genus Sporobacter (HB).
Conclusions
Our study results expanded our understanding of how to comprehensively consider the relationships for dietary habits–gut microbiome interactions with depression and anxiety.
The joint effects of stimulus quality and semantic context in visual word recognition were examined with event-related potential (ERP) recordings. In one-character Chinese word recognition, we manipulated stimulus quality at two degradation levels (highly vs. slightly degraded) and semantic context at two priming levels (semantically related vs. unrelated). In a prime–target–probe trial flow, ERPs were recorded to the target character which was presented in either high or slight degradation and which was preceded by either a semantically related or unrelated prime character. The target character was then followed by a probe character which was either identical to or different from the target character. Subjects were instructed to make target–probe matching judgments. The ERP results demonstrated a degradation by priming interaction, with larger N400 semantic priming effects for slightly degraded targets. Moreover, the degradation effects were observed on the P200, N250, and N400. These findings provided evidence for the cascaded model of visual word recognition such that the visual processing cascaded into the semantic stage and thus interacted on the N400 amplitude. The results were compared to an earlier study with a null ERP degradation by priming interaction. The ramifications of these results for models of visual word recognition are discussed.
Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.
The Dayao Paleolithic site, located in Inner Mongolia on the eastern margin of China's vast northwestern drylands, was a lithic quarry-workshop utilized by Pleistocene human migrants through the region. Determining the age of this activity has previously yielded controversial results. Our magnetostratigraphic and OSL dating results suggest the two artifact-bearing paleosols are correlated with MIS 5 and 7, respectively. Correlating paleoclimatic data with marine δ18O records leads us to conclude that two sandy gravel layers containing many artifacts in the lower part of the Dayao sequence were formed during MIS 9 and 11, if not earlier. Our results reveal that the earliest human occupation at the Dayao site occurred before ca. 400 ka during a relatively warm and moist interglacial period, similar to several subsequent occupations, documenting the earliest and northernmost archaeological assemblage yet reported in China's arid northwest. We conclude that the northward and southward displacements of the East Asian summer monsoon rain belt during past interglacial-glacial cycles were responsible for the discontinuous human occupation detected at the Dayao site. The penetration of this precipitation regime into dryland ecologies via the Huanghe (Yellow River) Valley effectively created a corridor for hominin migration into China's arid northwest.
Over recent decades, Chinese giant salamanders Andrias spp. have declined dramatically across much of their range. Overexploitation and habitat degradation have been widely cited as the cause of these declines. To investigate the relative contribution of each of these factors in driving the declines, we carried out standardized ecological and questionnaire surveys at 98 sites across the range of giant salamanders in China. We did not find any statistically significant differences between water parameters (temperature, dissolved oxygen, ammonia, nitrite, nitrate, salinity, alkalinity, hardness and flow rate) recorded at sites where giant salamanders were detected by survey teams and/or had been recently seen by local respondents, and sites where they were not detected and/or from which they had recently been extirpated. Additionally, we found direct and indirect evidence that the extraction of giant salamanders from the wild is ongoing, including within protected areas. Our results support the hypothesis that the decline of giant salamanders across China has been primarily driven by overexploitation. Data on water parameters may be informative for the establishment of conservation breeding programmes, an initiative recommended for the conservation of these species.
In this paper, the generation of relativistic electron mirrors (REMs) and the reflection of an ultra-short laser off this mirrors are discussed, applying two-dimensional particle-in-cell (2D-PIC) simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapidly expanding. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads the resonance between laser and REM. The reflected radiation near this interval and the corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, certain part of the reflected field could be selectively amplified or depressed, leading to the selectively adjusting of the corresponding spectra.
Flavonoid-rich foods have shown a beneficial effect against non-alcoholic fatty liver disease (NAFLD) in short-term randomised trials. It is uncertain whether the usual dietary intake of flavonoids may benefit patients with NAFLD. The present study evaluated the association between the usual intake of flavonoids and the risk of progression in NAFLD. The prospective study included 2694 adults from the Guangzhou Nutrition and Health Study. Face-to-face interviews using a seventy-nine-item FFQ were administered to assess habitual dietary flavonoid intake, while abdominal ultrasonography was conducted to evaluate the presence and degree of NAFLD, with measurements conducted 3 years apart. After adjustment for potential confounders, higher flavonoid intakes were gradely associated with reduced risks of worsen NAFLD status. The relative risks of worsening (v. non-worsening) NAFLD in the highest (v. lowest) quintile were 0·71 (95 % CI 0·54, 0·93) for total flavonoids, 0·74 (95 % CI 0·57, 0·95) for flavanones, 0·74 (95 % CI 0·56, 0·96) for flavan-3-ols, 0·90 (95 % CI 0·68, 1·18) for flavonols, 0·73 (95 % CI 0·56, 0·93) for flavones, 0·79 (95 % CI 0·61, 1·02) for isoflavones and 0·74 (95 % CI 0·57, 0·96) for anthocyanins. An L-shaped relationship was observed between total flavonoid intake and the risk of NAFLD progression. Path analyses showed that the association between flavonoids and NAFLD progression was mediated by decreases in serum cholesterol and homeostasis model assessment of insulin resistance. This prospective study showed that higher flavonoid intake was associated with a lower risk of NAFLD progression in the elderly overweight/obese Chinese population.
Birth weight influences not only brain development, but also mental health outcomes, including depression, but the underlying mechanism is unclear.
Methods.
The phenotypic data of 12,872–91,009 participants (59.18–63.38% women) from UK Biobank were included to test the associations between the birth weight, depression, and brain volumes through the linear and logistic regression models. As birth weight is highly heritable, the polygenic risk scores (PRSs) of birth weight were calculated from the UK Biobank cohort (154,539 participants, 56.90% women) to estimate the effect of birth weight-related genetic variation on the development of depression and brain volumes. Finally, the mediation analyses of step approach and mediation analysis were used to estimate the role of brain volumes in the association between birth weight and depression. All analyses were conducted sex stratified to assess sex-specific role in the associations.
Result.
We observed associations between birth weight and depression (odds ratio [OR] = 0.968, 95% confidence interval [CI] = 0.957–0.979, p = 2.29 × 10−6). Positive associations were observed between birth weight and brain volumes, such as gray matter (B = 0.131, p = 3.51 × 10−74) and white matter (B = 0.129, p = 1.67 × 10−74). Depression was also associated with brain volume, such as left thalamus (OR = 0.891, 95% CI = 0.850–0.933, p = 4.46 × 10−5) and right thalamus (OR = 0.884, 95% CI = 0.841–0.928, p = 2.67 × 10−5). Additionally, significant mediation effects of brain volume were found for the associations between birth weight and depression through steps approach and mediation analysis, such as gray matter (B = –0.220, p = 0.020) and right thalamus (B = –0.207, p = 0.014).
Conclusions.
Our results showed the associations among birth weight, depression, and brain volumes, and the mediation effect of brain volumes also provide evidence for the sex-specific of associations.