We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is economically one of the most threatening pests in tomato cultivation, which not only causes direct damage but also transmits many viruses. Breeding whitefly-resistant tomato varieties is a promising and environmentally friendly method to control whitefly populations in the field. Accumulating evidence from tomato and other model systems demonstrates that flavonoids contribute to plant resistance to herbivorous insects. Previously, we found that high flavonoid-producing tomato line deterred whitefly oviposition and settling behaviours, and was more resistant to whiteflies compared to the near-isogenic low flavonoid-producing tomato line. The objective of the current work is to describe in detail different aspects of the interaction between the whitefly and two tomato lines, including biochemical processes involved. Electrical penetration graph recordings showed that high flavonoid-producing tomato reduced whitefly probing and phloem-feeding efficiency. We also studied constitutive and induced plant defence responses and found that whitefly induced stronger reactive oxygen species accumulation through NADPH oxidase in high flavonoid-producing tomato than in low flavonoid-producing tomato. Moreover, whitefly feeding induced the expression of callose synthase genes and resulted in callose deposition in the sieve elements in high flavonoid-producing tomato but not in low flavonoid-producing tomato. As a consequence, whitefly feeding on high flavonoid-producing tomato significantly decreased uptake of phloem and reduced its performance when compared to low flavonoid-producing tomato. These results indicate that high flavonoid-producing tomato provides phloem-based resistance against whitefly infestation and that the breeding of such resistance in new varieties could enhance whitefly management.
With the widespread use of high-fat diets (HFD) in aquaculture, the adverse effects of HFD on farmed fish are becoming increasingly apparent. Creatine has shown potential as a green feed additive in farmed fish; however, the potential of dietary creatine to attenuate adverse effects caused by high-fat diets remains poorly understood. To address such gaps, this study was conducted to investigate the mitigating effect of dietary creatine on HFD-induced disturbance on growth performance, hepatic lipid metabolism, intestinal health and muscle quality of juvenile largemouth bass. Three diets were formulated: a control diet (10·20 % lipid), a high-fat diet (HFD, 18·31 % lipid) and HFD with 2 % creatine (HFD + creatine). Juvenile largemouth bass (3·73 (sem 0·01) g) were randomly assigned to three diets for 10 weeks. The key findings were as follows: (1) the expression of muscle growth-related genes and proteins was stimulated by dietary creatine, which contributes to ameliorate the adverse effects of HFD on growth performance; (2) dietary creatine alleviates HFD-induced adverse effects on intestinal health by improving intestinal health, which also enhances feed utilisation efficiency; (3) dietary creatine causes excessive lipid deposition, mainly via lipolysis and β-oxidation. Notably, this study also reveals a previously undisclosed effect of creatine supplementation on improving muscle quality. Together, for the first time from a comprehensive multiorgan or tissue perspective, our study provides a feasible approach for developing appropriate nutritional strategies to alleviate the adverse effects of HFD on farmed fish, based on creatine supplementation.
This study delves into the intricate relationship between chief executive officers' (CEOs') experiences of poverty and the digital transformation of their firms. Employing comprehensive data collection on CEOs' birthplaces and leveraging advanced text analytics to quantify digitalization, our analysis encompasses a wide array of listed companies in China. The findings reveal that CEOs' impoverished experiences exert a detrimental influence on their firms' digital transformation efforts, primarily due to a lack of motivation and social resources necessary for such initiatives. However, this adverse effect can be ameliorated when CEOs gain access to substantial social resources in later life. Our conclusions are robust, supported by rigorous testing, and underscore not only the impact of CEOs' early-life poverty on corporate digitalization but also the potential for overcoming these challenges through the acquisition of external social resources and connections in adulthood. This study contributes significantly to existing literature and offers practical implications for enhancing corporate digital transformation strategies.
Evidence suggests the crucial role of dysfunctional default mode (DMN), salience and frontoparietal (FPN) networks, collectively termed the triple network model, in the pathophysiology of treatment-resistant depression (TRD).
Aims
Using the graph theory- and seed-based functional connectivity analyses, we attempted to elucidate the role of low-dose ketamine in the triple networks, namely the DMN, salience and FPN.
Method
Resting-state functional connectivity magnetic resonance imaging (rs–fcMRI) data derived from two previous clinical trials of a single, low-dose ketamine infusion were analysed. In clinical trial 1 (Trial 1), patients with TRD were randomised to either a ketamine or normal saline group, while in clinical trial 2 (Trial 2) those patients with TRD and pronounced suicidal symptoms received a single infusion of either 0.05 mg/kg ketamine or 0.045 mg/kg midazolam. All participants underwent rs–fcMRI pre and post infusion at Day 3. Both graph theory- and seed-based functional connectivity analyses were performed independently.
Results
Trial 1 demonstrated significant group-by-time effects on the degree centrality and cluster coefficient in the right posterior cingulate cortex (PCC) cortex ventral 23a and b (DMN) and the cluster coefficient in the right supramarginal gyrus perisylvian language (salience). Trial 2 found a significant group-by-time effect on the characteristic path length in the left PCC 7Am (DMN). In addition, both ketamine and normal saline infusions exerted a time effect on the cluster coefficient in the right dorsolateral prefrontal cortex a9-46v (FPN) in Trial 1.
Conclusions
These findings may support the utility of the triple-network model in elucidating ketamine’s antidepressant effect. Alterations in DMN, salience and FPN function may underlie this effect.
The study aims were to present in vitro susceptibilities of clinical isolates from Gram-negative bacteria bloodstream infections (GNBSI) collected in China. GNBSI isolates were collected from 18 tertiary hospitals in 7 regions of China from 2018 to 2020. Minimum inhibitory concentrations were assessed using a Trek Diagnostic System. Susceptibility was determined using CLSI broth microdilution, and breakpoints were interpreted using CLSI M100 (2021). A total of 1,815 GNBSI strains were collected, with E. coli (42.4%) and Klebsiella pneumoniae (28.6%) being the most prevalent species, followed by P. aeruginosa (6.7%). Susceptibility analyses revealed low susceptibilities (<40%) of ESBL-producing E. coli and K. pneumonia to third-/fourth-generation cephalosporins, monobactamases, and fluoroquinolones. High susceptibilities to colistin (95.0%) and amikacin (81.3%) were found for K. pneumoniae, while Acinetobacter baumannii exhibited a high susceptibility (99.2%) to colistin but a low susceptibility to other antimicrobials (<27.5%). Isolates from ICUs displayed lower drug susceptibility rates of K. pneumoniae and A. baumannii than isolates from non-ICUs (all P < 0.05). Carbapenem-resistant and ESBL-producing K. pneumoniae detection was different across regions (both P < 0.05). E. coli and K. pneumoniae were major contributors to GNBSI, while A. baumannii exhibited severe drug resistance in isolates obtained from ICU departments.
This study proposes two novel time-varying model-averaging methods for time-varying parameter regression models. When the number of predictors is small, we propose a novel time-varying complete subset-averaging (TVCSA) procedure, where the optimal time-varying subset size is obtained by minimizing the local leave-h-out cross-validation criterion. The TVCSA method is asymptotically optimal for achieving the lowest possible local mean squared error. When the number of predictors is relatively large, we propose a factor TVCSA method to reduce the computational burden by first reducing the dimension of predictors by extracting a few factors using principal component analysis and then obtaining the TVCSA forecasts from time-varying models with the generated factors. We show that the TVCSA estimator remains asymptotically optimal in the presence of generated factors. Monte Carlo simulation studies have provided favorable evidence for the TVCSA methods relative to the popular model-averaging methods in the literature. Empirical applications to equity premiums and inflation forecasting highlight the practical merits of the proposed methods.
The betatron radiation source features a micrometer-scale source size, a femtosecond-scale pulse duration, milliradian-level divergence angles and a broad spectrum exceeding tens of keV. It is conducive to the high-contrast imaging of minute structures and for investigating interdisciplinary ultrafast processes. In this study, we present a betatron X-ray source derived from a high-charge, high-energy electron beam through a laser wakefield accelerator driven by the 1 PW/0.1 Hz laser system at the Shanghai Superintense Ultrafast Laser Facility (SULF). The critical energy of the betatron X-ray source is 22 ± 5 keV. The maximum X-ray flux reaches up to 4 × 109 photons for each shot in the spectral range of 5–30 keV. Correspondingly, the experiment demonstrates a peak brightness of 1.0 × 1023 photons·s−1·mm−2·mrad−2·0.1%BW−1, comparable to those demonstrated by third-generation synchrotron light sources. In addition, the imaging capability of the betatron X-ray source is validated. This study lays the foundation for future imaging applications.
Xiangranggounan is an intensively occupied settlement associated with the Kayue culture on the north-eastern Qinghai-Tibet Plateau. Excavations in 2022 and 2023 revealed five house types with clear stratigraphic relationships that help to expand current understanding of the evolution of prehistoric settlement patterns in harsh plateau environments.
Knowledge is growing on the essential role of neural circuits involved in aberrant cognitive control and reward sensitivity for the onset and maintenance of binge eating.
Aims
To investigate how the brain's reward (bottom-up) and inhibition control (top-down) systems potentially and dynamically interact to contribute to subclinical binge eating.
Method
Functional magnetic resonance imaging data were acquired from 30 binge eaters and 29 controls while participants performed a food reward Go/NoGo task. Dynamic causal modelling with the parametric empirical Bayes framework, a novel brain connectivity technique, was used to examine between-group differences in the directional influence between reward and executive control regions. We explored the proximal risk factors for binge eating and its neural basis, and assessed the predictive ability of neural indices on future disordered eating and body weight.
Results
The binge eating group relative to controls displayed fewer reward-inhibition undirectional and directional synchronisations (i.e. medial orbitofrontal cortex [mOFC]–superior parietal gyrus [SPG] connectivity, mOFC → SPG excitatory connectivity) during food reward_nogo condition. Trait impulsivity is a key proximal factor that could weaken the mOFC–SPG connectivity and exacerbate binge eating. Crucially, this core mOFC–SPG connectivity successfully predicted binge eating frequency 6 months later.
Conclusions
These findings point to a particularly important role of the bottom-up interactions between cortical reward and frontoparietal control circuits in subclinical binge eating, which offers novel insights into the neural hierarchical mechanisms underlying problematic eating, and may have implications for the early identification of individuals suffering from strong binge eating-associated symptomatology in the general population.
We present 35 AMS 14C dates from 26 horizons on a 30-cm gravity core from Shira Lake in the republic of Khakassia, Central Russia. The chronology of the core is determined by 210Pb/137Cs dating results and interpretation of elemental geochemistry with historic documents, covering deposition since ca. 1870 CE. This study assesses the old carbon influence (OCI) on organic carbon 14C by comparison with the 210Pb/137Cs dates, sources of carbon, and lake conditions interpreted from elemental proxies. These include elemental concentrations in 0.5N HCl leaches and Aqua Regia dissolution fractions, as well as organic C, N and C/N measurements. From these data we establish a succession of the following six zones: I) (1870∼1900 CE) relatively fresh lake with high lake level, low productivity and high surface runoff (wet conditions); II) (1900∼1940 CE) a “white zone” reflected by high carbonate and low magnetic signal formed in a saline, oxidizing and holomictic lake stage; III) (1940∼1963 CE) reduced carbonate with elevated organic C, N, C/N, Mo and magnetic signal, indicating a stratified and anaerobic lake; IV) (1963∼1994 CE) increased salinity and productivity with the highest observed magnetic signal and elevated heavy metal and Mo contents, implying enhanced anoxic conditions and human impact; V) (1994∼2003 CE) high C/N, organic and carbonate contents suggesting meromictic and anaerobic lake conditions; VI) (2003∼2020 CE) decreased carbonate content with increased organic C and N, and heavy metals showing a deteriorating lake environment under human impact.
Research on female leadership has documented that female-led firms tend to engage in lower risk-taking activities than male-led firms and attributed it to females' higher propensity for risk aversion. Nevertheless, this claim and its associated findings have been increasingly challenged. In this article, we address the unclear pattern of females' risk preference in leadership by contextualizing the effect of chair gender on corporate acquisitions in the context of state-owned enterprises (SOEs) in China. Drawing on expectancy violation theory, we propose that female chairs are more inclined to take risks when they operate in contexts that encourage female agency. We further explore self-affirmation mechanisms through two moderators: gender stereotype threats and self-efficacy. An analysis of chairs of 1,265 publicly listed SOEs in China from 2008 to 2020 supports predictions that female chairs are more likely than male chairs to engage in firm acquisitions. The effects are amplified under low levels of female executive representation and high levels of political appointments held by female chairs. The study shows that context determines how extensively gender affects risk-taking. It offers new insights into when and why female leaders exhibit higher levels of risk-taking in Chinese SOEs.
The Northwest Tibet region is defined by several terranes, magmatic belts, basins and sutures, which were primarily shaped by the tectonic activities associated with Proto-, Palaeo- and Neo-Tethys Oceans. However, the basement nature and Precambrian tectonic evolution of the Northwest Tibet region, particularly within the Tashikuergan-Tianshuihai terrane, remain largely unknown. The Hongliutan area, located in the northeastern part of the Tashikuergan-Tianshuihai terrane, contains a critical sequence of Precambrian metamorphic rock strata. Detailed petrological, geochronological, and geochemical analyses of these metamorphic rocks – including plagioclase schist, quartz schist, amphibolite and nearby leucogranite – reveal the intricate processes of tectonic evolution within the Tianshuihai unit. Combining these findings with previous geochronological results is crucial for re-evaluating the nature of the Tashikuergan-Tianshuihai basement and its Precambrian tectonic evolution of the Tashikuergan-Tianshuihai basement. Our results reveal the following: (1) the leucogranite and amphibolite, identified as Cambrian igneous rocks, display distinct geochemical signatures indicative of a continental arc origin. These include calc-alkaline characteristics, enrichment in Th, U, Pb, Zr and Hf and depletion in Ba, Nb, Sr and Ti. Their εNd(t) values, close to zero, further support this tectonic setting, with the leucogranite and amphibolite formed at 506 and 522 Ma, respectively. (2) The plagioclase schist and quartz schist are interpreted to be Neoproterozoic volcaniclastic rocks that formed in a rifted (passive) continental margin setting. The quartz schist is particularly rich in detrital zircons, displaying a broad spectrum of 207Pb/206Pb ages, ranging from 901 to 3364 Ma. (3) A significant subset of detrital zircons within the quartz schist exhibits oscillatory zoning, high Th/U ratios and sharp-edged, anhedral-to-subhedral crystal forms, suggesting a derivation from proximal or deep-seated terranes. The concordant U–Pb zircon ages of 2468 and 974 Ma from the quartz schist, along with the 978 Ma age from the inherited zircons in the amphibolite, and the 1.2–2.1 Ga T2DM(Nd) from leucogranite and metamorphic rocks, collectively suggest that the Tianshuihai unit is likely underpinned by a Palaeoproterozoic basement that indicates Neoproterozoic reworking.
Therefore, our findings suggest the presence of a continuous, northwest-southeast trending Palaeoproterozoic basement underlying the entire Tashikuergan-Tianshuihai terrane. An alternative scenario posits that the ancient basement, currently beneath the Tashikuergan terrane, could extend into the Tianshuihai region, potentially indicating a Cambrian continental margin arc interspersed with remnants of older terranes.
The rapid and efficient removal of weeds is currently a research hotspot. With the integration of robotics and automation technology into agricultural production, intelligent field-weeding robots have emerged. An overview of the development status of weeding robots based on bibliometric and scientific mapping methods is presented. Two key technologies of weeding robots are summarized, and the research progress of precision-spraying weeding robots, mechanical weeding robots, and thermal weeding robots with laser devices, categorized by weeding method, is reviewed. Finally, a summary and an outlook on the future development trends of intelligent field-weeding robots are provided, aiming to offer a reference for further promoting the development of weeding robots.
This paper presents a compact broad dual-band rectifier based on a transmission line matching network. This method improves the overall impedance matching performance over two bands, and improves bandwidth of the rectifier’s efficiency. A π-type direct current filter with excellent harmonic suppression performance is proposed. The multi-section transmission line used as the dual-band input impedance matching network is analyzed to achieve an arbitrary frequency ratio. A rectifier is designed and implemented using a three-stage transmission-line matching network. Simulation and experimental results show that a dual-band rectifier is successfully performed with the measured power conversion efficiency (PCE) of 75.7% and 76.3% at 0.915 and 2.45 GHz, respectively. Additionally, the rectifier exhibits bandwidths of 0.48 and 0.25 GHz when the PCE exceeds 70%. Significant enhancement of bandwidth over conventional rectifiers is demonstrated.
Although dietary factors have been examined as potential risk factors for liver cancer, the evidence is still inconclusive. Using a diet-wide association analysis, our research evaluated the associations of 126 foods and nutrients on the risk of liver cancer in a Chinese population. We obtained the diet consumption of 72,680 women in the Shanghai Women’s Health Study using baseline dietary questionnaires. The association between each food and nutrient and liver cancer risk was quantified by Cox regression model. A false discovery rate of 0.05 was used to determine the foods and nutrients which need to be verified. Totally 256 incident liver cancer cases were identified in 1,267,391 person-years during the follow-up duration. At the statistical significance level (P ≤ 0.05), higher intakes of cooked wheaten foods, pear, grape and copper were inversely associated with liver cancer risk, while spinach, leafy vegetables, eggplant and carrots showed the positive associations. After considering multiple comparisons, no dietary variable was associated with liver cancer risk. Similar findings were seen in the stratification, secondary and sensitivity analyses. Our findings observed no significant association between dietary factors and liver cancer risk after considering multiple comparisons in Chinese women. More evidence is needed to explore the associations between diet and female liver cancer occurrence.