We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Metabolic enzymes are the catalysts that drive the biochemical reactions essential for sustaining life. Many of these enzymes are tightly regulated by feedback mechanisms. To fully understand their roles and modulation, it is crucial to investigate the relationship between their structure, catalytic mechanism, and function. In this perspective, by using three examples from our studies on Mycobacterium tuberculosis (Mtb) isocitrate lyase and related proteins, we highlight how an integrated approach combining structural, activity, and biophysical data provides insights into their biological functions. These examples underscore the importance of employing fast-fail experiments at the early stages of a research project, emphasise the value of complementary techniques in validating findings, and demonstrate how in vitro data combined with chemical, biochemical, and physiological knowledge can lead to a broader understanding of metabolic adaptations in pathogenic bacteria. Finally, we address the unexplored questions in Mtb metabolism and discuss how we expand our approach to include microbiological and bioanalytical techniques to further our understanding. Such an integrated and interdisciplinary strategy has the potential to uncover novel regulatory mechanisms and identify new therapeutic opportunities for the eradication of tuberculosis. The approach can also be broadly applied to investigate other biochemical networks and complex biological systems.
Adolescence is a period marked by highest vulnerability to the onset of depression, with profound implications for adult health. Neuroimaging studies have revealed considerable atrophy in brain structure in these patients with depression. Of particular importance are regions responsible for cognitive control, reward, and self-referential processing. However, the causal structural networks underpinning brain region atrophies in adolescents with depression remain unclear.
Objectives
This study aimed to investigate the temporal course and causal relationships of gray matter atrophy within the brains of adolescents with depression.
Methods
We analyzed T1-weighted structural images using voxel-based morphometry in first-episode adolescent patients with depression (n=80, 22 males; age = 15.57±1.78) and age, gender matched healthy controls (n=82, 25 males; age = 16.11±2.76) to identify the disease stage-specific gray matter abnormalities. Then, with granger causality analysis, we arranged the patients’ illness duration chronologically to construct the causal structural covariance networks that investigated the causal relationships of those atypical structures.
Results
Compared to controls, smaller volumes in ventral medial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), middle cingulate cortex (MCC) and insula areas were identified in patients with less than 1 year illness duration, and further progressed to the subgenual ACC, regions of default, frontoparietal networks in longer duration. Causal network results revealed that dACC, vmPFC, MCC and insula were prominent nodes projecting exerted positive causal effects to regions of the default mode and frontoparietal networks. The dACC, vmPFC and insula also had positive projections to the reward network, which included mainly the thalamus, caudate and putamen, while MCC also exerted a positive causal effect on the insula and thalamus.
Conclusions
These findings revealed the progression of structural atrophy in adolescent patients with depression and demonstrated the causal relationships between regions involving cognitive control, reward and self-referential processes.
Although behavioral mechanisms in the association among depression, anxiety, and cancer are plausible, few studies have empirically studied mediation by health behaviors. We aimed to examine the mediating role of several health behaviors in the associations among depression, anxiety, and the incidence of various cancer types (overall, breast, prostate, lung, colorectal, smoking-related, and alcohol-related cancers).
Methods
Two-stage individual participant data meta-analyses were performed based on 18 cohorts within the Psychosocial Factors and Cancer Incidence consortium that had a measure of depression or anxiety (N = 319 613, cancer incidence = 25 803). Health behaviors included smoking, physical inactivity, alcohol use, body mass index (BMI), sedentary behavior, and sleep duration and quality. In stage one, path-specific regression estimates were obtained in each cohort. In stage two, cohort-specific estimates were pooled using random-effects multivariate meta-analysis, and natural indirect effects (i.e. mediating effects) were calculated as hazard ratios (HRs).
Results
Smoking (HRs range 1.04–1.10) and physical inactivity (HRs range 1.01–1.02) significantly mediated the associations among depression, anxiety, and lung cancer. Smoking was also a mediator for smoking-related cancers (HRs range 1.03–1.06). There was mediation by health behaviors, especially smoking, physical inactivity, alcohol use, and a higher BMI, in the associations among depression, anxiety, and overall cancer or other types of cancer, but effects were small (HRs generally below 1.01).
Conclusions
Smoking constitutes a mediating pathway linking depression and anxiety to lung cancer and smoking-related cancers. Our findings underline the importance of smoking cessation interventions for persons with depression or anxiety.
Internalising disorders are highly prevalent emotional dysregulations during preadolescence but clinical decision-making is hampered by high heterogeneity. During this period impulsivity represents a major risk factor for psychopathological trajectories and may act on this heterogeneity given the controversial anxiety–impulsivity relationships. However, how impulsivity contributes to the heterogeneous symptomatology, neurobiology, neurocognition and clinical trajectories in preadolescent internalising disorders remains unclear.
Aims
The aim was to determine impulsivity-dependent subtypes in preadolescent internalising disorders that demonstrate distinct anxiety–impulsivity relationships, neurobiological, genetic, cognitive and clinical trajectory signatures.
Method
We applied a data-driven strategy to determine impulsivity-related subtypes in 2430 preadolescents with internalising disorders from the Adolescent Brain Cognitive Development study. Cross-sectional and longitudinal analyses were employed to examine subtype-specific signatures of the anxiety–impulsivity relationship, brain morphology, cognition and clinical trajectory from age 10 to 12 years.
Results
We identified two distinct subtypes of patients who internalise with comparably high anxiety yet distinguishable levels of impulsivity, i.e. enhanced (subtype 1) or decreased (subtype 2) compared with control participants. The two subtypes exhibited opposing anxiety–impulsivity relationships: higher anxiety at baseline was associated with higher lack of perseverance in subtype 1 but lower sensation seeking in subtype 2 at baseline/follow-up. Subtype 1 demonstrated thicker prefrontal and temporal cortices, and genes enriched in immune-related diseases and glutamatergic and GABAergic neurons. Subtype 1 exhibited cognitive deficits and a detrimental trajectory characterised by increasing emotional/behavioural dysregulations and suicide risks during follow-up.
Conclusions
Our results indicate impulsivity-dependent subtypes in preadolescent internalising disorders and unify past controversies about the anxiety–impulsivity interaction. Clinically, individuals with a high-impulsivity subtype exhibit a detrimental trajectory, thus early interventions are warranted.
Over the past decade, transdiagnostic indicators in relation to neurobiological processes have provided extensive insight into youth’s risk for psychopathology. During development, exposure to childhood trauma and dysregulation (i.e., so-called AAA symptomology: anxiety, aggression, and attention problems) puts individuals at a disproportionate risk for developing psychopathology and altered network-level neural functioning. Evidence for the latter has emerged from resting-state fMRI studies linking mental health symptoms and aberrations in functional networks (e.g., cognitive control (CCN), default mode networks (DMN)) in youth, although few of these investigations have used longitudinal designs. Herein, we leveraged a three-year longitudinal study to identify whether traumatic exposures and concomitant dysregulation trigger changes in the developmental trajectories of resting-state functional networks involved in cognitive control (N = 190; 91 females; time 1 Mage = 11.81). Findings from latent growth curve analyses revealed that greater trauma exposure predicted increasing connectivity between the CCN and DMN across time. Greater levels of dysregulation predicted reductions in within-network connectivity in the CCN. These findings presented in typically developing youth corroborate connectivity patterns reported in clinical populations, suggesting there is predictive utility in using transdiagnostic indicators to forecast alterations in resting-state networks implicated in psychopathology.
Mental health was only modestly affected in adults during the early months of the COVID-19 pandemic on the group level, but interpersonal variation was large.
Aims
We aim to investigate potential predictors of the differences in changes in mental health.
Method
Data were aggregated from three Dutch ongoing prospective cohorts with similar methodology for data collection. We included participants with pre-pandemic data gathered during 2006–2016, and who completed online questionnaires at least once during lockdown in The Netherlands between 1 April and 15 May 2020. Sociodemographic, clinical (number of mental health disorders and personality factors) and COVID-19-related variables were analysed as predictors of relative changes in four mental health outcomes (depressive symptoms, anxiety and worry symptoms, and loneliness), using multivariate linear regression analyses.
Results
We included 1517 participants with (n = 1181) and without (n = 336) mental health disorders. Mean age was 56.1 years (s.d. 13.2), and 64.3% were women. Higher neuroticism predicted increases in all four mental health outcomes, especially for worry (β = 0.172, P = 0.003). Living alone and female gender predicted increases in depressive symptoms and loneliness (β = 0.05–0.08), whereas quarantine and strict adherence with COVID-19 restrictions predicted increases in anxiety and worry symptoms (β = 0.07–0.11).Teleworking predicted a decrease in anxiety symptoms (β = −0.07) and higher age predicted a decrease in anxiety (β = −0.08) and worry symptoms (β = −0.10).
Conclusions
Our study showed neuroticism as a robust predictor of adverse changes in mental health, and identified additional sociodemographic and COVID-19-related predictors that explain longitudinal variability in mental health during the COVID-19 pandemic.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
Bloodstream infections (BSIs) are a frequent cause of morbidity in patients with acute myeloid leukemia (AML), due in part to the presence of central venous access devices (CVADs) required to deliver therapy.
Objective:
To determine the differential risk of bacterial BSI during neutropenia by CVAD type in pediatric patients with AML.
Methods:
We performed a secondary analysis in a cohort of 560 pediatric patients (1,828 chemotherapy courses) receiving frontline AML chemotherapy at 17 US centers. The exposure was CVAD type at course start: tunneled externalized catheter (TEC), peripherally inserted central catheter (PICC), or totally implanted catheter (TIC). The primary outcome was course-specific incident bacterial BSI; secondary outcomes included mucosal barrier injury (MBI)-BSI and non-MBI BSI. Poisson regression was used to compute adjusted rate ratios comparing BSI occurrence during neutropenia by line type, controlling for demographic, clinical, and hospital-level characteristics.
Results:
The rate of BSI did not differ by CVAD type: 11 BSIs per 1,000 neutropenic days for TECs, 13.7 for PICCs, and 10.7 for TICs. After adjustment, there was no statistically significant association between CVAD type and BSI: PICC incident rate ratio [IRR] = 1.00 (95% confidence interval [CI], 0.75–1.32) and TIC IRR = 0.83 (95% CI, 0.49–1.41) compared to TEC. When MBI and non-MBI were examined separately, results were similar.
Conclusions:
In this large, multicenter cohort of pediatric AML patients, we found no difference in the rate of BSI during neutropenia by CVAD type. This may be due to a risk-profile for BSI that is unique to AML patients.
A Mediterranean-style eating pattern (MED-EP) may include moderate red meat intake. However, it is unknown if the pro-atherogenic metabolite trimethylamine N-oxide (TMAO) is affected by the amount of red meat consumed with a MED-EP. The results presented are from a secondary, retrospective objective of an investigator-blinded, randomised, crossover, controlled feeding trial (two 5-week interventions separated by a 4-week washout) to determine if a MED-EP with 200 g unprocessed lean red meat/week (MED-CONTROL) reduces circulating TMAO concentrations compared to a MED-EP with 500 g unprocessed lean red meat/week (MED-RED). Participants were seventy-seven women and twelve men (n 39 total) who were either overweight or obese (BMI: mean (30·5) (sem 0·3) kg/m2). Serum samples were obtained following an overnight fast both before (pre) and after (post) each intervention. Fasting serum TMAO, choline, carnitine and betaine concentrations were measured using a targeted liquid chromatography-MS. Data were analysed to assess if (a) TMAO and related metabolites differed by intervention and (b) if changes in TMAO were associated with changes in Framingham 10-year risk score. Serum TMAO was lower post-intervention following MED-CONTROL compared with MED-RED intervention (post-MED-CONTROL 3·1 (sem 0·2) µmv. post-MED-RED 5·0 (sem 0·5) µm, P < 0·001), and decreased following MED-CONTROL (pre- v. post-MED-CONTROL, P = 0·025). Exploratory analysis using mixed model ANCOVA identified a positive association between changes in TMAO and changes in homoeostatic model assessment of insulin resistance (P = 0·036). These results suggest that lower amounts of red meat intake lead to lower TMAO concentrations in the context of a MED-EP.
South-east Asia's diverse coastal wetlands, which span natural mudflats and mangroves to man-made salt pans, offer critical habitat for many migratory waterbird species in the East Asian–Australasian Flyway. Species dependent on these wetlands include nearly the entire population of the Critically Endangered spoon-billed sandpiper Calidris pygmaea and the Endangered spotted greenshank Tringa guttifer, and significant populations of several other globally threatened and declining species. Presently, more than 50 coastal Important Bird and Biodiversity Areas (IBAs) in the region (7.4% of all South-east Asian IBAs) support at least one threatened migratory species. However, recent studies continue to reveal major knowledge gaps on the distribution of migratory waterbirds and important wetland sites along South-east Asia's vast coastline, including undiscovered and potential IBAs. Alongside this, there are critical gaps in the representation of coastal wetlands across the protected area networks of many countries in this region (e.g. Viet Nam, Indonesia, Malaysia), hindering effective conservation. Although a better understanding of the value of coastal wetlands to people and their importance to migratory species is necessary, governments and other stakeholders need to do more to strengthen the conservation of these ecosystems by improving protected area coverage, habitat restoration, and coastal governance and management. This must be underpinned by the judicious use of evidence-based approaches, including satellite-tracking of migratory birds, ecological research and ground surveys.
Pharmacogenomic testing has emerged to aid medication selection for patients with major depressive disorder (MDD) by identifying potential gene-drug interactions (GDI). Many pharmacogenomic tests are available with varying levels of supporting evidence, including direct-to-consumer and physician-ordered tests. We retrospectively evaluated the safety of using a physician-ordered combinatorial pharmacogenomic test (GeneSight) to guide medication selection for patients with MDD in a large, randomized, controlled trial (GUIDED).
Materials and Methods
Patients diagnosed with MDD who had an inadequate response to ≥1 psychotropic medication were randomized to treatment as usual (TAU) or combinatorial pharmacogenomic test-guided care (guided-care). All received combinatorial pharmacogenomic testing and medications were categorized by predicted GDI (no, moderate, or significant GDI). Patients and raters were blinded to study arm, and physicians were blinded to test results for patients in TAU, through week 8. Measures included adverse events (AEs, present/absent), worsening suicidal ideation (increase of ≥1 on the corresponding HAM-D17 question), or symptom worsening (HAM-D17 increase of ≥1). These measures were evaluated based on medication changes [add only, drop only, switch (add and drop), any, and none] and study arm, as well as baseline medication GDI.
Results
Most patients had a medication change between baseline and week 8 (938/1,166; 80.5%), including 269 (23.1%) who added only, 80 (6.9%) who dropped only, and 589 (50.5%) who switched medications. In the full cohort, changing medications resulted in an increased relative risk (RR) of experiencing AEs at both week 4 and 8 [RR 2.00 (95% CI 1.41–2.83) and RR 2.25 (95% CI 1.39–3.65), respectively]. This was true regardless of arm, with no significant difference observed between guided-care and TAU, though the RRs for guided-care were lower than for TAU. Medication change was not associated with increased suicidal ideation or symptom worsening, regardless of study arm or type of medication change. Special attention was focused on patients who entered the study taking medications identified by pharmacogenomic testing as likely having significant GDI; those who were only taking medications subject to no or moderate GDI at week 8 were significantly less likely to experience AEs than those who were still taking at least one medication subject to significant GDI (RR 0.39, 95% CI 0.15–0.99, p=0.048). No other significant differences in risk were observed at week 8.
Conclusion
These data indicate that patient safety in the combinatorial pharmacogenomic test-guided care arm was no worse than TAU in the GUIDED trial. Moreover, combinatorial pharmacogenomic-guided medication selection may reduce some safety concerns. Collectively, these data demonstrate that combinatorial pharmacogenomic testing can be adopted safely into clinical practice without risking symptom degradation among patients.
The aim of this study was to explore the frequency and distribution of gene mutations that are related to isoniazid (INH) and rifampin (RIF)-resistance in the strains of the multidrug-resistant tuberculosis (MDR-TB) Mycobacterium tuberculosis (M.tb) in Beijing, China. In this retrospective study, the genotypes of 173 MDR-TB strains were analysed by spoligotyping. The katG, inhA genes and the promoter region of inhA, in which genetic mutations confer INH resistance; and the rpoB gene, in which genetic mutations confer RIF resistance, were sequenced. The percentage of resistance-associated nucleotide alterations among the strains of different genotypes was also analysed. In total, 90.8% (157/173) of the MDR strains belonged to the Beijing genotype. Population characteristics were not significantly different among the strains of different genotypes. In total, 50.3% (87/173) strains had mutations at codon S315T of katG; 16.8% (29/173) of strains had mutations in the inhA promoter region; of them, 5.5% (15/173) had point mutations at −15 base (C→T) of the inhA promoter region. In total, 86.7% (150/173) strains had mutations at rpoB gene; of them, 40% (69/173) strains had mutations at codon S531L of rpoB. The frequency of mutations was not significantly higher in Beijing genotypic MDR strains than in non-Beijing genotypes. Beijing genotypic MDR-TB strains were spreading in Beijing and present a major challenge to TB control in this region. A high prevalence of katG Ser315Thr, inhA promoter region (−15C→T) and rpoB (S531L) mutations was observed. Molecular diagnostics based on gene mutations was a useful method for rapid detection of MDR-TB in Beijing, China.
An acute gastroenteritis (AGE) outbreak caused by a norovirus occurred at a hospital in Shanghai, China, was studied for molecular epidemiology, host susceptibility and serological roles. Rectal and environmental swabs, paired serum samples and saliva specimens were collected. Pathogens were detected by real-time polymerase chain reaction and DNA sequencing. Histo-blood group antigens (HBGA) phenotypes of saliva samples and their binding to norovirus protruding proteins were determined by enzyme-linked immunosorbent assay. The HBGA-binding interfaces and the surrounding region were analysed by the MegAlign program of DNAstar 7.1. Twenty-seven individuals in two care units were attacked with AGE at attack rates of 9.02 and 11.68%. Eighteen (78.2%) symptomatic and five (38.4%) asymptomatic individuals were GII.6/b norovirus positive. Saliva-based HBGA phenotyping showed that all symptomatic and asymptomatic cases belonged to A, B, AB or O secretors. Only four (16.7%) out of the 24 tested serum samples showed low blockade activity against HBGA-norovirus binding at the acute phase, whereas 11 (45.8%) samples at the convalescence stage showed seroconversion of such blockade. Specific blockade antibody in the population played an essential role in this norovirus epidemic. A wide HBGA-binding spectrum of GII.6 supports a need for continuous health attention and surveillance in different settings.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
Antibiotics are designed to affect gut microbiota and subsequently gut homeostasis. However, limited information exists about short- and long-term effects of early antibiotic intervention (EAI) on gut homeostasis (especially for the small intestine) of pigs following antibiotic withdrawal. We investigated the impact of EAI on specific bacterial communities, microbial metabolites and mucosal immune parameters in the small intestine of later-growth-stage pigs fed with diets differing in CP levels. Eighteen litters of piglets were fed creep feed with or without antibiotics from day 7 to day 42. At day 42, pigs within each group were offered a normal- or low-CP diet. Five pigs per group were slaughtered at days 77 and 120. At day 77, EAI increased Enterobacteriaceae counts in the jejunum and ileum and decreased Bifidobacterium counts in the jejunum and ileum (P < 0.05). Moreover, tryptamine, putrescine, secretory immunoglobulin (Ig) A and IgG concentrations in the ileum and interleukin-10 (IL-10) mRNA and protein levels in the jejunum and ileum were decreased in pigs with EAI (P < 0.05). At day 120, EAI only suppressed Clostridium cluster XIVa counts in the jejunum and ileum (P < 0.05). These results suggest that EAI has a short-term effect on specific bacterial communities, amino acid decarboxylation and mucosal immune parameters in the small intestine (particularly in the ileum). At days 77 and 120, feeding a low-CP diet affected Bifidobacterium, Clostridium cluster IV, Clostridium cluster XIVa and Enterobacteriaceae counts in the jejunum or ileum (P < 0.05). Moreover, feeding a low-CP diet increased the concentrations of Igs in the jejunum and decreased pro-inflammatory cytokines levels in the jejunum and ileum (P < 0.05). At day 120, feeding a low-CP diet increased short-chain fatty acid concentrations, reduced ammonia and spermidine concentrations and up-regulated genes related to barrier function in the jejunum and ileum (P < 0.05). These results suggest that feeding a low-CP diet changes specific bacterial communities and intestinal metabolite concentrations and modifies mucosal immune parameters. These findings contribute to our understanding on the duration of the impact of EAI on gut homeostasis and may provide basis data for nutritional modification in young pigs after antibiotic treatment.
Fluid motion has two well-known fundamental processes: the vector transverse process characterized by vorticity, and the scalar longitudinal process consisting of a sound mode and an entropy mode, characterized by dilatation and thermodynamic variables. The existing theories for the sound mode involve the multi-variable issue and its associated difficulty of source identification. In this paper, we define the source of sound inside the fluid by the objective causality inherent in dynamic equations relevant to a longitudinal process, which naturally favours the material time-rate operator $D/Dt$ rather than the local time-rate operator $\unicode[STIX]{x2202}/\unicode[STIX]{x2202}t$, and describes the sound mode by inhomogeneous advective wave equations. The sources of sound physical production inside the fluid are then examined at two levels. For the conventional formulation in terms of thermodynamic variables at the first level, we show that the universal kinematic source can be condensed to a scalar invariant of the surface deformation tensor. Further, in the formulation in terms of dilatation at the second level, we find that the sound mode in viscous and heat-conducting flow has sources from rich nonlinear couplings of vorticity, entropy and surface deformation, which cannot be disclosed at the first level. Preliminary numerical demonstration of the theoretical findings is made for two typical compressible flows, i.e. the interaction of two corotating Gaussian vortices and the unsteady type IV shock/shock interaction. The results obtained in this study provide a new theoretical basis for, and physical insight into, understanding various nonlinear longitudinal processes and the interactions therein.
At present, analysis of diet and bladder cancer (BC) is mostly based on the intake of individual foods. The examination of food combinations provides a scope to deal with the complexity and unpredictability of the diet and aims to overcome the limitations of the study of nutrients and foods in isolation. This article aims to demonstrate the usability of supervised data mining methods to extract the food groups related to BC. In order to derive key food groups associated with BC risk, we applied the data mining technique C5.0 with 10-fold cross-validation in the BLadder cancer Epidemiology and Nutritional Determinants study, including data from eighteen case–control and one nested case–cohort study, compromising 8320 BC cases out of 31 551 participants. Dietary data, on the eleven main food groups of the Eurocode 2 Core classification codebook, and relevant non-diet data (i.e. sex, age and smoking status) were available. Primarily, five key food groups were extracted; in order of importance, beverages (non-milk); grains and grain products; vegetables and vegetable products; fats, oils and their products; meats and meat products were associated with BC risk. Since these food groups are corresponded with previously proposed BC-related dietary factors, data mining seems to be a promising technique in the field of nutritional epidemiology and deserves further examination.
Previously the GABA(A) receptor beta-2 subunit gene GABRB2 was found to be associated with schizophrenia (SCZ). for SNPs and haplotypes in GRBRB2, the associations with bipolar disorder (BPD), the functional consequences on GABRB2 expression and their relationship to demographic and clinical characteristics in BPD and SCZ remain to be elucidated.
Method:
Case-control analysis was performed for association study of GABRB2 with BPD, and its mRNA expression in postmortem BPD brains was examined using quantitative real-time PCR. Quantitative trait analysis was subsequently employed to assess the covariate effects of demographic and clinical characteristics on genotypic correlation of GABRB2 expression in SCZ and BPD.
Results:
Significant association of GABRB2 with BPD and reduction in GABRB2 mRNA expression in BPD brains were observed in the present study. Duration of illness (DOI) was found to be a significant covariate for the correlation of the disease-associated SNPs rs1816071, rs1816072 and rs187269 with GABRB2 expression in both SCZ and BPD. for individuals with homozygous major genotypes of these SNPs, while GABRB2 expression increased with age in the controls, it decreased with DOI and age in SCZ, and with DOI in BPD. with age of onset as covariate, these three SNPs were significantly correlated with antipsychotic dosage in SCZ.
Conclusion:
These results have thus revealed correlations of GABRB2 SNPs and expression not only with the occurrence of SCZ and BPD, but also with the clinical characteristics of patients, therefore providing support for a shared etiological role played by the gene in both diseases.
Bioinformatic investigations indicate that has-mir-206 (microRNA-206, miRNA-206) could regulate BDNF protein synthesis by interfering with BDNF mRNA translation, which is disrupted in bipolar disorder (BPD).
Objectives:
This study is to investigate whether miRNA-206 gene variants were associated with BPD susceptibility in a Han Chinese population.
Methods:
342 patients who met DSM-IV criteria for bipolar disorder type I (BPD-I) or type II (BPD-II) and 386 matched health controls were enrolled into this study. the miRNA-206 gene and +/-500bp were selected for gene sequencing. for the case-control genetic comparisons, differences in the genotype and allele distributions between patients and controls were examined using Pearson's χ2 test.
Results:
Gene sequencing showed that there are two polymorphisms rs16882131(C/T) and rs62408583 (A/C) located at the upstream of miRNA-206 gene, which are complete linkage disequilibrium. the association analysis showed that there was no significant difference for genotype frequencies (χ2 = 2.075, df = 2, P = 0.354) or for allele frequencies (χ2 = 0.041, df = 1, P = 0.839) between BPD patients and controls. Similarly, no significant difference was found between BPD-I patients and controls (genotype χ2 = 1.411, df = 2, P = 0.494; allele χ2 = 0.380, df = 1, P = 0.538). However, there was significant difference between BPD-II patients and controls (genotype χ2 = 7.933, df = 2, P = 0.019; allele χ2 = 5.403, df = 1, P = 0.020).
Conclusions:
Our findings do not support that BPD susceptibility was associated with miRNA-206 gene polymorphisms in the studied Han Chinese population. the association between miRNA-206 gene polymorphisms and bipolar disorder type II is needed to be carefully interpreted. Further studies are necessary to elucidate the involvement miRNA-206 in the pathophysiology of BPD.
Life events and accompanying psychological and behavioral reactions frequently have an impact upon people's daily lives and are believed to predispose them to disease. Psychological stressors impact many physiological and pathological disease outcomes, including mental illness. Positive social interactions have in turn been shown to exert powerful beneficial effects on health outcomes and longevity.
Objectives
The Objective of this study was to analyze the relationships of Psychological Distress, Social Support, and Mental Fitness among patients of mental health services.
Aims
This article aims to discuss the evidence supporting the mediating effect of social support between psychological stress and mental health.
Methods
This study was performed on patients who visited the mental health services in Daejeon from October to December 2011. In total, 395 patients were evaluated with Mental Fitness Scale, Kessler Psychological Distress Scale(KPDS), and Multidimensional Scale of Perceived Social Support(MSPSS).
Results
Correlations among variables of psychological distress and social support on subordinate variable of mental fitness of patients were significant. The result of the regression analysis, psychological distress and social support have a positively significant influence on mental fitness of patients. social support showed mediating effects between psychological distress and mental fitness.
Conclusion
These results suggest that health care providers ought to seek social support for patients, in order to provide positive mental fitness of patients.