We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Design-by-analogy (DbA) is a powerful method for product innovation design, leveraging multidomain design knowledge to generate new ideas. Previous studies have relied heavily on designers’ experiences to retrieve analogical knowledge from other domains, lacking a structured method to organize and understand multidomain analogical knowledge. This presents a significant challenge in recommending high-quality analogical sources, which needs to be addressed. To tackle these issues, a knowledge graph-assisted DbA approach via structured analogical knowledge retrieval is proposed. First, an improved function-effect-structure ontology model is constructed to extract functions and effects as potential analogical sources, and six semantic matching rules are established to output entity triplets, and the DbA knowledge graph (DbAKG) is developed. Second, based on the knowledge of semantic relationships in DbAKG, the domain distance and similarity between the design target and the analogical sources are introduced to establish an analogical value model, ensuring the novelty and feasibility of analogical sources. After that, with function as the design target, analogical sources transfer strategy is formed to support innovative solution solving, and TRIZ theory is used to solve design conflicts. Finally, a pipeline inspection robot case study is further employed to verify the proposed approach. Additionally, a knowledge graph-assisted analogical design system has been developed to assist in managing multidomain knowledge and the analogical process, facilitate the adoption of innovative design strategies, and assist companies in providing more competitive products to seize the market.
In recent years, the removal of orbital debris has become an increasingly urgent task due to advancements in human space exploration. Capturing space debris through caging manipulation offers notable advantages in terms of robustness and controllability. This paper proposes a configuration-based caging manipulation design method for a cable-driven flexible arm. First, the cable-driven flexible arm with multi self-lockable links is introduced. To quantify the caging configurations formed by different self-lockable link selections, a novel planar caging quality metric is then presented for arbitrary planar objects. Using this metric, a caging design method is developed for the flexible arm to conduct caging manipulations. Finally, the caging manipulation strategies are discussed with lock selection maps for different objects, and a robust caging strategy considering uncertainty is further explored. Simulation and experimental results validate the effectiveness of the proposed caging design method and demonstrate better performance compared to conventional caging methods.
Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) is a key lepidopteran pest affecting maize production across Asia. While its general biology has been well studied, the phenomenon of pupal ring formation remains poorly understood. This study examined the factors influencing pupal ring formation under controlled laboratory conditions. Results showed that pupal rings were formed exclusively when larvae were reared on an artificial diet, with no ring formation observed on corn-stalks. Females exhibited a significantly higher tendency to participate in ring formation than males. Additionally, male participation increased proportionally with the number of rings formed, a pattern not observed in females. The size of the rearing arena significantly influenced ring formation, with smaller arenas (6 cm diameter) promoting more frequent pairing, particularly among females. Temperature also played a significant role: lower participation rates were recorded at 22 °C compared to 25 °C and 28 °C, although the number of rings formed did not differ significantly across temperatures. Developmental stage and sex composition further influenced pairing behaviour; pupal rings formed only among individuals of similar maturity, and male participation was significantly reduced in all-male groups compared to mixed-sex groups. These findings suggest that pupal ring formation in O. furnacalis is modulated by dietary substrate, larval sex, environmental conditions, and developmental synchrony, offering new insights into the behavioural ecology of this pest.
Asian corn borer, Ostrinia furnacalis Guenée (Lepidoptera: Crambidae), is a major pest in corn production, and its management remains a significant challenge. Current control methods, which rely heavily on synthetic chemical pesticides, are environmentally detrimental and unsustainable, necessitating the development of eco-friendly alternatives. This study investigates the potential of the entomopathogenic nematode Steinernema carpocapsae as a biological control agent for O. furnacalis pupae, focusing on its infection efficacy and the factors influencing its performance. We conducted a series of laboratory experiments to evaluate the effects of distance, pupal developmental stage, soil depth, and light conditions on nematode attraction, pupal mortality and sublethal impacts on pupal longevity and oviposition. Results demonstrated that S. carpocapsae exhibited the highest attraction to pupae at a 3 cm distance, with infection declining significantly at greater distances. Younger pupae (<12 h old), were more attractive to nematodes than older pupae, and female pupae were preferred over males. Nematode infection was highest on the head and thorax of pupae, with a significant reduction in infection observed after 24 h. Infection caused 100% mortality in pupae within 2 cm soil depth, though efficacy was reduced under light conditions. Sublethal effects included a significant reduction in the longevity of infected adults and a decrease in the number of eggs laid by infected females compared to controls. These findings underscore the potential of S. carpocapsae as an effective biocontrol agent for sustainable pest management in corn production, offering a viable alternative to chemical pesticides.
State-owned enterprises (SOEs) in China play a critical role in national economic development and the country's positioning on the global stage. Chinese SOEs have undergone substantial transformations from traditional government-run entities to a variety of corporate forms exhibiting different levels of state involvement. Despite their substantial influence, the internal diversity of SOEs – from wholly state-owned to mixed-ownership – has not been thoroughly examined. This paper provides an overview of SOEs' critical roles in the Chinese economy, the relationship between SOEs and privately owned enterprises (POEs), and the challenges of SOEs in different stages of Chinese economic development. It then introduces five research papers that explore the institutional, strategic, and organizational perspectives on how SOEs manage the dual pressures of state and market logic, respond to policy adjustments, tackle leadership challenges, and navigate current global trends such as digital transformation, technological innovation, and environmental sustainability. In this paper, we provide important implications for policy and managerial practices and highlight a future research agenda for the heterogeneity of Chinese SOEs, and how SOEs respond to these challenges in the evolving geopolitical landscape, adapt their strategies, and manage relationships with foreign governments and enterprises under such conditions.
This study aimed to investigate the effects of physical multimorbidity on the trajectory of cognitive decline over 17 years and whether vary across wealth status. The study was conducted in 9035 respondents aged 50+ at baseline from nine waves (2002–2019) of the English Longitudinal Study of Aging. A latent class analysis was used to identify patterns of physical multimorbidity, and mixed multilevel models were performed to determine the association between physical multimorbidity and trajectories of cognitive decline. Joint analyses were conducted to further verify the influence of wealth status. Four patterns of physical multimorbidity were identified. Mixed multilevel models with quadratic terms of time and status/patterns indicated significant non-linear trajectories of multimorbidity on cognitive function. The magnitude of the association between complex multisystem patterns and cognitive decline increased the most as follow-up progressed. Individuals with high wealth and hypertension/diabetes patterns have significantly lower composite global cognitive z scores over time as compared with respiratory/osteoporosis patterns. Physical multimorbidity at baseline is associated with the trajectory of cognitive decline, and the magnitude of the association increased over time. The trend of cognitive decline differed in specific combinations of wealth status and physical multimorbidity.
Traditional mediation analysis assumes that a study population is homogeneous and the mediation effect is constant over time, which may not hold in some applications. Motivated by smoking cessation data, we propose a latent class dynamic mediation model that explicitly accounts for the fact that the study population may consist of different subgroups and the mediation effect may vary over time. We use a proportional odds model to accommodate the subject heterogeneities and identify latent subgroups. Conditional on the subgroups, we employ a Bayesian hierarchical nonparametric time-varying coefficient model to capture the time-varying mediation process, while allowing each subgroup to have its individual dynamic mediation process. A simulation study shows that the proposed method has good performance in estimating the mediation effect. We illustrate the proposed methodology by applying it to analyze smoking cessation data.
Nano-silicon has been regarded as the most promising anode material for next-generation lithium-ion batteries (LIBs). However, the preparation of nano-silicon suffers from high cost, complex procedures, and low yield, which hinders its commercial application. In this study, porous nano-silicon with particle sizes in the range of 50–100 nm was prepared through molten salt-assisted magnesiothermic reduction using porous nano-silica derived from clay minerals as the precursor. Through combining ball milling and acid activation, the synthesised nano-silica derived from montmorillonite exhibited smaller particle sizes (below 50 nm), higher specific surface area (647 m2 g–1), and total pore volume (0.71 cm3 g–1). This unique structure greatly facilitated the conversion efficiency of silica into nano-silicon by maximising the contact area between silica and magnesium powder and optimising the diffusion kinetics of magnesium atoms. When used as anodes in LIBs, the synthesised nano-silicon materials demonstrated a high specific capacity of up to 1222 mAh g–1 and an excellent capacity retention rate of 79% after 150 cycles at a current density of 0.5 A g–1. This method provides a novel approach for the cost-effective and large-scale production of nano-silicon materials for high-performance anodes.
To evaluate the variations in COVID-19 case fatality rates (CFRs) across different regions and waves, and the impact of public health interventions, social and economic characteristics, and demographic factors on COVID-19 CFRs, we collected data from 30 countries with the highest incidence rate in three waves. We summarized the CFRs of different countries and continents in each wave through meta-analysis. Spearman’s correlation and multiple linear regression were employed to estimate the correlation between influencing factors and reduction rates of CFRs. Significant differences in CFRs were observed among different regions during the three waves (P < 0.001). An association was found between the changes in fully vaccinated rates (rs = 0.41), population density (rs = 0.43), the proportion of individuals over 65 years old (rs = 0.43), and the reduction rates of case fatality rate. Compared to Wave 1, the reduction rates in Wave 2 were associated with population density (β = 0.19, 95%CI: 0.05–0.33) and smoking rates (β = −4.66, 95%CI: −8.98 – −0.33), while in Wave 3 it was associated with booster vaccine rates (β = 0.60, 95%CI: 0.11–1.09) and hospital beds per thousand people (β = 4.15, 95%CI: 1.41–6.89). These findings suggest that the COVID-19 CFRs varied across different countries and waves, and promoting booster vaccinations, increasing hospital bed capacity, and implementing tobacco control measures can help reduce CFRs.
To assess the efficacy and safety of two different modes of administration, external ear canal filling and smearing, in the treatment of otomycosis.
Methods
A computerised search of relevant published studies in the China National Knowledge Infrastructure, China Biology Medicine, Web of Science, PubMed, Embase and Cochrane Library databases that include randomised controlled trials or clinically controlled trials on the same drug in different modes of administration for the treatment of otomycosis.
Results
Seven studies with 934 patients were included. The filled group had a higher clinical efficacy (relative risk = 1.18, 95 per cent confidence interval (CI) 1.12–1.24, p < 0.0001) and a lower recurrence rate (relative risk = 0.29, 95 per cent CI 0.18–0.47, p < 0.0001) compared with the smear group, and there was no significant difference in the adverse effects (relative risk = 0.61, 95 per cent CI 0.34–1.12, p = 0.11).
Conclusion
Current evidence suggests that the efficacy of the delivery modality of the external auditory canal filling treatment is significantly better than external auditory canal smearing.
Bilinguals may choose to speak a language either at their own will or in response to an external demand, but the underlying neural mechanisms in the two contexts is poorly understood. In the present study, Chinese–English bilinguals named pairs of pictures in three conditions: during forced-switch, the naming language altered between pictures 1 and 2. During non-switch, the naming language used was the same. During free-naming, either the same or different languages were used at participants' own will. While behavioural switching costs were observed during free-naming and forced-switching, neuroimaging results showed that forced language selection (i.e., forced-switch and non-switch) is associated with left-lateralized frontal activations, which have been implicated in inhibitory control. Free language selection (i.e., free-naming), however, was associated with fronto-parietal activations, which have been implicated in self-initiated behaviours. These findings offer new insights into the neural differentiation of language control in forced and free language selection contexts.
We find that division managers who are connected to the CEO are substantially less likely than others to depart from the firm and are more likely to be promoted. Connected managers are protected when performance is poor, and they display no special ability to improve performance given this protection. Connections matter more in weak governance/incentive environments, and the external labor market and stock market appear skeptical of connected managers’ talents. While much of the evidence suggests inefficient favoritism, connected managers are protected more in peripheral segments, suggesting a possible efficiency benefit in helping to resolve intrafirm information problems.
The integration of camera and LiDAR technologies has the potential to significantly enhance construction robots’ perception capabilities by providing complementary construction information. Structured light cameras (SLCs) are a desirable alternative as they provide comprehensive information on construction defects. However, fusing these two types of information depends largely on the sensors’ relative positions, which can only be established through extrinsic calibration. This paper introduces a novel calibration algorithm considering a customized board for SLCs and repetitive LiDARs, which are designed to facilitate the automation of construction robots. The calibration board is equipped with four symmetrically distributed hemispheres, whose centers are obtained by fitting the spheres and adoption with the geometric constraints. Subsequently, the spherical centers serve as reference features to estimate the relationship between the sensors. These distinctive features enable our proposed method to only require one calibration board pose and minimize human intervention. We conducted both simulation and real-world experiments to assess the performance of our algorithm. And the results demonstrate that our method exhibits enhanced accuracy and robustness.
To examine the effectiveness of Self-Help Plus (SH+) as an intervention for alleviating stress levels and mental health problems among healthcare workers.
Methods
This was a prospective, two-arm, unblinded, parallel-designed randomised controlled trial. Participants were recruited at all levels of medical facilities within all municipal districts of Guangzhou. Eligible participants were adult healthcare workers experiencing psychological stress (10-item Perceived Stress Scale scores of ≥15) but without serious mental health problems or active suicidal ideation. A self-help psychological intervention developed by the World Health Organization in alleviating psychological stress and preventing the development of mental health problems. The primary outcome was psychological stress, assessed at the 3-month follow-up. Secondary outcomes were depression symptoms, anxiety symptoms, insomnia, positive affect (PA) and self-kindness assessed at the 3-month follow-up.
Results
Between November 2021 and April 2022, 270 participants were enrolled and randomly assigned to either SH+ (n = 135) or the control group (n = 135). The SH+ group had significantly lower stress at the 3-month follow-up (b = −1.23, 95% CI = −2.36, −0.10, p = 0.033) compared to the control group. The interaction effect indicated that the intervention effect in reducing stress differed over time (b = −0.89, 95% CI = −1.50, −0.27, p = 0.005). Analysis of the secondary outcomes suggested that SH+ led to statistically significant improvements in most of the secondary outcomes, including depression, insomnia, PA and self-kindness.
Conclusions
This is the first known randomised controlled trial ever conducted to improve stress and mental health problems among healthcare workers experiencing psychological stress in a low-resource setting. SH+ was found to be an effective strategy for alleviating psychological stress and reducing symptoms of common mental problems. SH+ has the potential to be scaled-up as a public health strategy to reduce the burden of mental health problems in healthcare workers exposed to high levels of stress.
A common complication of bicanalicular intubation is dislocation of the silicone tube.
Methods
Eleven patients with prolapsed silicone tubes who had undergone bicanalicular nasal intubation were injected with a 2 per cent lidocaine solution to infiltrate the lacrimal duct mucosa. A memory wire probe was used to pull a 4-0 suture through the lacrimal passage retrogradely, allowing the suture to grab the silicone tube. Paraffin oil was applied to the contact part of the rope and the silicone tube, then the distal end of the silk thread was removed from the nostril until the tube was pulled into place.
Results
The prolapsed silicone tubes were restored by surgery in nine patients, with the drainage tube in the correct position in the eye and the lacrimal duct irrigation unobstructed.
Conclusion
The optimisations made in this study are considered effective adjustments of reduction surgery for a prolapsed silicone tube.
Based on the path encoding pulse compression teleology, a novel method for obtaining high-power microwave (HPM) pulse with ultrahigh repetition frequency is proposed in this paper. The mechanism of the path encoding pulse compression teleology is first introduced. And then, the obtained HPM pulse is analyzed. Theoretical analysis shows that the peak power of MW level and the repetition frequency of MHz level for the generated HPM pulse can be easily reached. To demonstrate the effectiveness of this method for obtaining HPM pulse with ultrahigh repetition frequency characteristic, a HPM-obtaining experiment was carried out based on an S-band microwave source. The HPM pulses with the width of 1 ns, 2 ns, and 3 ns are studied, respectively. The measured results show that the HPM pulse with the power higher than 100 kW and the repetition frequency of 250 kHz at the frequency of 2.856 GHz is easily obtained. The repetition frequency of the generated HPM pulse can be easily changed. Because the pulse with the power higher than 100 kW and the repetition frequency of several hundreds of kHz is obtained for the first time, this type of pulse will have a broad prospect of application in the communication, radar, and electronic countermeasure fields. In addition, the effect experiment of interfering communication and control links was carried out by utilizing the ultrahigh repetition frequency characteristic of the generated HPM pulse. Also, the experiment results show the feasibility of this pulse for interfering the communication and control links.
All-fiber coherent beam combiners based on the self-imaging effect can achieve a near-perfect single laser beam, which can provide a promising way to overcome the power limitation of a single-fiber laser. One of the key points is combining efficiency, which is determined by various mismatches during fabrication. A theoretical model has been built, and the mismatch error is analyzed numerically for the first time. The mismatch errors have been numerically studied with the beam quality and combining efficiency being chosen as the evaluation criteria. The tolerance of each mismatch error for causing 1% loss is calculated to guide the design of the beam combiners. The simulation results are consistent with the experimental results, which show that the mismatch error of the square-core fiber is the main cause of the efficiency loss. The results can provide useful guidance for the fabrication of all-fiber coherent beam combiners.
Chemosensory proteins (CSPs) were necessary for insect sensory system to perform important processes such as feeding, mating, spawning, and avoiding natural enemies. However, their functions in non-olfactory organs have been poorly studied. To clarify the function of CSPs in the development of Mythimna separata (Walker) larvae, two CSP genes, MsCSP17 and MsCSP18, were identified from larval integument transcriptome dataset. Both of MsCSP17 and MsCSP18 contained four conserved cysteine sites (C × (6)-C × (18)-C × (2)-C), with a signal peptide at the N-terminal. RT-qPCR analysis showed that MsCSP17 and MsCSP18 have different expression patterns among different developmental stages and tissues. MsCSP17 was highly expressed in 1st–4th instar larvae, and MsCSP18 had high expression in adults. Both genes were expressed highly in larval head, thorax, integument and mandible. Moreover, both of MsCSP17 and MsCSP18 were lowly expressed in larval integuments when larvae molted for 6 h and 9 h from 3rd to 4th instar, but highly at the beginning and end phase during molting. After injection of dsMsCSP17 and dsMsCSP18, the expression levels of two genes decreased significantly, with the body weight of larvae decreased, the mortality increased, and the eclosion rate decreased. It was suggested that MsCSP17 and MsCSP18 contributed to the development of M. separata larvae.
The age-related heterogeneity in major depressive disorder (MDD) has received significant attention. However, the neural mechanisms underlying such heterogeneity still need further investigation. This study aimed to explore the common and distinct functional brain abnormalities across different age groups of MDD patients from a large-sample, multicenter analysis.
Methods
The analyzed sample consisted of a total of 1238 individuals including 617 MDD patients (108 adolescents, 12–17 years old; 411 early-middle adults, 18–54 years old; and 98 late adults, > = 55 years old) and 621 demographically matched healthy controls (60 adolescents, 449 early-middle adults, and 112 late adults). MDD-related abnormalities in brain functional connectivity (FC) patterns were investigated in each age group separately and using the whole pooled sample, respectively.
Results
We found shared FC reductions among the sensorimotor, visual, and auditory networks across all three age groups of MDD patients. Furthermore, adolescent patients uniquely exhibited increased sensorimotor-subcortical FC; early-middle adult patients uniquely exhibited decreased visual-subcortical FC; and late adult patients uniquely exhibited wide FC reductions within the subcortical, default-mode, cingulo-opercular, and attention networks. Analysis of covariance models using the whole pooled sample further revealed: (1) significant main effects of age group on FCs within most brain networks, suggesting that they are decreased with aging; and (2) a significant age group × MDD diagnosis interaction on FC within the default-mode network, which may be reflective of an accelerated aging-related decline in default-mode FCs.
Conclusions
To summarize, these findings may deepen our understanding of the age-related biological and clinical heterogeneity in MDD.
Childhood is a critical period for muscle accumulation. Studies in elders have reported that antioxidant vitamins could improve muscle health. However, limited studies have assessed such associations in children. This study included 243 boys and 183 girls. A seventy-nine-item FFQ was used to investigate dietary nutrients intake. Plasma levels of retinol and α-tocopherol were measured using high-performance liquid chromatography with MS. Dual X-ray absorptiometry was used to assess appendicular skeletal muscle mass (ASM) and total body fat. The ASM index (ASMI) and ASMI Z-score were then calculated. Hand grip strength was measured using a Jamar® Plus+ Hand Dynamometer. Fully adjusted multiple linear regression models showed that for each unit increase in plasma retinol content, ASM, ASMI, left HGS and ASMI Z-score increased by 2·43 × 10−3 kg, 1·33 × 10−3 kg/m2, 3·72 × 10−3 kg and 2·45 × 10−3 in girls, respectively (P < 0·001–0·050). ANCOVA revealed a dose–response relationship between tertiles of plasma retinol level and muscle indicators (Ptrend: 0·001–0·007). The percentage differences between the top and bottom tertiles were 8·38 %, 6·26 %, 13·2 %, 12·1 % and 116 % for ASM, ASMI, left HGS, right HGS and ASMI Z-score in girls, respectively (Pdiff: 0·005–0·020). No such associations were observed in boys. Plasma α-tocopherol levels were not correlated with muscle indicators in either sex. In conclusion, high circulating retinol levels are positively associated with muscle mass and strength in school-age girls.