We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper introduces a novel ray-tracing methodology for various gradient-index materials, particularly plasmas. The proposed approach utilizes adaptive-step Runge–Kutta integration to compute ray trajectories while incorporating an innovative rasterization step for ray energy deposition. By removing the requirement for rays to terminate at cell interfaces – a limitation inherent in earlier cell-confined approaches – the numerical formulation of ray motion becomes independent of specific domain geometries. This facilitates a unified and concise tracing method compatible with all commonly used curvilinear coordinate systems in laser–plasma simulations, which were previously unsupported or prohibitively complex under cell-confined frameworks. Numerical experiments demonstrate the algorithm’s stability and versatility in capturing diverse ray physics across reduced-dimensional planar, cylindrical and spherical coordinate systems. We anticipate that the rasterization-based approach will pave the way for the development of a generalized ray-tracing toolkit applicable to a broad range of fluid simulations and synthetic optical diagnostics.
Systematically monitoring the baseline sensitivity of troublesome weeds to herbicides is a crucial step in the early detection of their market lifespan. Florpyrauxifen-benzyl is one of the most important herbicides used in rice production throughout the world, and has been used for 5 yr in China. Barnyardgrass is one of the main targeted weed species of florpyrauxifen-benzyl. In total, 114 barnyardgrass populations were collected from rice fields in Jiangsu Province, China, and using whole-plant bioassays they were screened for susceptibility to florpyrauxifen-benzyl. The GR50 values (representing the dose that causes a 50% reduction in fresh weight of aboveground parts) of florpyrauxifen-benzyl for all populations ranged from 1.0 to 34.5 g ai ha−1, with an average of 6.8 g ai ha−1, a baseline sensitivity dose of 3.3 g ai ha−1, and a baseline sensitivity index of 34.5. Twenty-one days after treatment with florpyrauxifen-benzyl at the labeled dose (36 g ai ha−1), 90% of the barnyardgrass populations exhibited >95% reductions in fresh weight of aboveground parts. Compared with the baseline sensitivity dose, 63, 44, and 7 populations had, respectively, no resistance (55%), low resistance (39%), and moderate resistance (6%) to florpyrauxifen-benzyl. Furthermore, the GR50 distribution of barnyardgrass populations did not show a significant correlation with collection location, planting method (direct-seeding or transplanting), or rice species (Oryza sativa L. ssp. indica or ssp. japonica) at any of rice fields where seeds had been collected (P > 0.05). In conclusion, florpyrauxifen-benzyl remains effective for barnyardgrass control in rice fields despite serious resistance challenges.
Based on a 4f system, a 0° reflector and a single laser diode side-pump amplifier, a new amplifier is designed to compensate the spherical aberration of the amplified laser generated by a single laser diode side-pump amplifier and enhance the power of the amplified laser. Furthermore, the role of the 4f system in the passive spherical aberration compensation and its effect on the amplified laser are discussed in detail. The results indicate that the amplification efficiency is enhanced by incorporating a 4f system in a double-pass amplifier and placing a 0° reflector only at the focal point of the single-pass amplified laser. This method also effectively uses the heat from the gain medium (neodymium-doped yttrium aluminium garnet) of the amplifier to compensate the spherical aberration of the amplified laser.
Suicidal ideation (SI) is very common in patients with major depressive disorder (MDD). However, its neural mechanisms remain unclear. The anterior cingulate cortex (ACC) region may be associated with SI in MDD patients. This study aimed to elucidate the neural mechanisms of SI in MDD patients by analyzing changes in gray matter volume (GMV) in brain structures in the ACC region, which has not been adequately studied to date.
Methods
According to the REST-meta-MDD project, this study subjects consisted of 235 healthy controls and 246 MDD patients, including 123 MDD patients with and 123 without SI, and their structural magnetic resonance imaging data were analyzed. The 17-item Hamilton Depression Rating Scale (HAMD) was used to assess depressive symptoms. Correlation analysis and logistic regression analysis were used to determine whether there was a correlation between GMV of ACC and SI in MDD patients.
Results
MDD patients with SI had higher HAMD scores and greater GMV in bilateral ACC compared to MDD patients without SI (all p < 0.001). GMV of bilateral ACC was positively correlated with SI in MDD patients and entered the regression equation in the subsequent logistic regression analysis.
Conclusions
Our findings suggest that GMV of ACC may be associated with SI in patients with MDD and is a sensitive biomarker of SI.
Despite growing awareness of the mental health damage caused by air pollution, the epidemiologic evidence on impact of air pollutants on major mental disorders (MDs) remains limited. We aim to explore the impact of various air pollutants on the risk of major MD.
Methods
This prospective study analyzed data from 170 369 participants without depression, anxiety, bipolar disorder, and schizophrenia at baseline. The concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), particulate matter with aerodynamic diameter > 2.5 μm, and ≤ 10 μm (PM2.5–10), nitrogen dioxide (NO2), and nitric oxide (NO) were estimated using land-use regression models. The association between air pollutants and incident MD was investigated by Cox proportional hazard model.
Results
During a median follow-up of 10.6 years, 9 004 participants developed MD. Exposure to air pollution in the highest quartile significantly increased the risk of MD compared with the lowest quartile: PM2.5 (hazard ratio [HR]: 1.16, 95% CI: 1.09–1.23), NO2 (HR: 1.12, 95% CI: 1.05–1.19), and NO (HR: 1.10, 95% CI: 1.03–1.17). Subgroup analysis showed that participants with lower income were more likely to experience MD when exposed to air pollution. We also observed joint effects of socioeconomic status or genetic risk with air pollution on the MD risk. For instance, the HR of individuals with the highest genetic risk and highest quartiles of PM2.5 was 1.63 (95% CI: 1.46–1.81) compared to those with the lowest genetic risk and lowest quartiles of PM2.5.
Conclusions
Our findings highlight the importance of air pollution control in alleviating the burden of MD.
To understand the dietary patterns of adults and explore their association with iodine nutritional levels and thyroid function in adults.
Design:
We randomly collected 5 ml of adult urine samples and measured urinary iodine concentration (UIC) by cerium arsenate-catalysed spectrophotometry. A serum sample of 5 ml was collected for the determination of free triiodothyronine, free thyroxine and thyrotropin, and diet-related information was collected through a FFQ. Dietary patterns were extracted by principal component analysis, and the relationship between dietary patterns and iodine nutrition levels and thyroid function was explored.
Settings:
A cross-sectional study involving adults in Xinjiang, China, was conducted.
Participants:
A total of 435 adults were enrolled in the study.
Results:
The overall median urinary iodine of the 435 respondents was 219·73 μg/l. The dietary patterns were PCA1 (staple food pattern), PCA2 (fruit, vegetable and meat pattern), PCA3 (fish, shrimp and legume pattern) and PCA4 (dairy-based protein pattern). The correlation analyses showed that PCA1 and PCA3 were positively correlated with the UIC. The results of the multivariable analysis showed that PCA1, Q1, Q2 and Q3 were associated with an increased risk of iodine deficiency compared with Q4 ((OR): 260·41 (95 % CI: 20·16, 663·70)), 59·89 (5·64, 335·81), and 2·01 (0·15, 26·16), respectively). In PCA2, Q3 was associated with an increased risk of iodine deficiency compared with Q4 (OR: 0·16 (0·05, 0·53)). In PCA3, Q3 was associated with an increased risk of iodine deficiency compared with Q4 (OR: 0·23 (0·06, 0·90)). In PCA4, Q1 was associated with an increased risk of iodine deficiency compared with Q4 (OR: 31·30 (4·88, 200·64)).
Conclusion:
This study demonstrated that of the four dietary patterns, the least dependent staple food pattern (Q1) had a higher risk of iodine deficiency compared with the most dependent staple food pattern (Q4). However, the current evidence on the effect of dietary patterns on thyroid function needs to be validated by further longitudinal studies that include long-term follow-up, larger sample sizes and repeated measures.
This study investigates the molecular intricacies of the transmembrane protein TSP11 gene in Echinococcus strains isolated from livestock and patients in Yunnan Province afflicted with Echinococcus granulosus (E. granulosus) between 2016 and 2020. Gene typing analysis of the ND1 gene revealed the presence of the G1 type, G5 type and untyped strains, constituting 52.4, 38.1 and 9.5%, respectively. The analysis of 42 DNA sequences has revealed 24 novel single nucleotide polymorphic sites, delineating 11 haplotypes, all of which were of the mutant type. Importantly, there were no variations observed in mutation sites or haplotypes in any of the hosts. The total length of the TSP11 gene's 4 exons is 762 bp, encoding 254 amino acids. Our analysis posits the existence of 6 potential B-cell antigenic epitopes within TSP11, specifically at positions 49-KSN-51, 139-GKRG-142, 162-DNG-164, 169-NGS-171, 185-DS-186 and 231-PPRFTN-236. Notably, these epitopes exhibit consistent presence among various intermediate hosts and haplotypes. However, further validation is imperative to ascertain their viability as diagnostic antigens for E. granulosus in the Yunnan Province.
Artificial sweeteners are generally used and recommended to alternate added sugar for health promotion. However, the health effects of artificial sweeteners remain unclear. In this study, we included 6371 participants from the National Health and Nutrition Examination Survey with artificial sweetener intake records. Logistic regression and Cox regression were applied to explore the associations between artificial sweeteners and risks of cardiometabolic disorders and mortality. Mendelian randomisation was performed to verify the causal associations. We observed that participants with higher consumption of artificial sweeteners were more likely to be female and older and have above medium socio-economic status. After multivariable adjustment, frequent consumers presented the OR (95 % CI) for hypertension (1·52 (1·29, 1·80)), hypercholesterolaemia (1·28 (1·10, 1·50)), diabetes (3·74 (3·06, 4·57)), obesity (1·52 (1·29, 1·80)), congestive heart failure (1·89 (1·35, 2·62)) and heart attack (1·51 (1·10, 2·04)). Mendelian randomisation confirmed the increased risks of hypertension and type 2 diabetes. Moreover, an increased risk of diabetic mortality was identified in participants who had artificial sweeteners ≥ 1 daily (HR = 2·62 (1·46, 4·69), P = 0·001). Higher consumption of artificial sweeteners is associated with increased risks of cardiometabolic disorders and diabetic mortality. These results suggest that using artificial sweeteners as sugar substitutes may not be beneficial.
Food environments around secondary schools are a strong influence on adolescents’ food purchasing habits1. We conducted a repeat cross-sectional study using Google Street View to examine school food environments in regional and metropolitan NSW, Australia over 17-years. Findings showed that unhealthful food outlets such as fast-food franchises, consistently dominated school food environments over 2007-2023. Increasing levels of poor nutrition among youth has been raised as a concern2 by the Health Advisory Panel for Youth at the University of Sydney [HAPYUS] - an established group of 16 adolescents aged 13-18 years residing in NSW3. To gain further insight into the study findings and how it may impact adolescents’ health, it is critical to include voices of adolescents in this research. The aim of this sub-study was to engage with members of our youth advisory group and conduct a consultation exercise on these study findings, drawing upon their lived experiences of school food environments. In Aug-2023, we engaged four youth advisors from HAPYUS. Study authors provided an overview of the study and its findings to the youth advisors via a Zoom call. Youth advisors formulated a 500-word statement on their perspectives and lived experiences of food environments surrounding their high schools over the subsequent 4 weeks. Adolescents agreed that physical proximity to unhealthy food outlets around schools was a key contributor to unhealthy eating habits however also recognised social and economic factors which play a significant role in shaping poor diets. The following quotes from their combined statement reflect social and economic concerns: i) “[We] observed on a daily basis young people were opting to travel to the closest food court for fast food, or in some extreme cases, even order fast food via a meal delivery app, to be delivered to the school - as opposed to choosing the closest outlet” ii) “Overpriced foods in schools with some drinks costing 2x more than a heavily discounted KFC meal, no meaningful difference between foods sold at canteens and those sold at fast food outlets - heavily processed, packaged snacks, pre-made reheated foods” iii) “Most unhealthy food outlets choose a location that is not only close to schools but also close to major shopping centres and food courts… ideal for an after-school social catchup as it appears to accommodate the needs of a large group of people.” Consultation findings revealed the importance of social and economic factors that must be analysed in addition to adolescents’ physical proximity to food outlets around their schools. Youth advisors call for governments to take immediate action to implement policies that ensure schools have cheap and healthy foods at canteens to mitigate against the purchase of foods from nearby unhealthy food outlets.
Large-scale outbreaks of the dinoflagellate Karenia mikimotoi caused substantial mortality of abalone, Haliotis discus hannai in Fujian, China in 2012, resulting in 20 billion in economic losses to abalone industries. However, the mechanism behind the mortality, especially the reaction of abalone to this microalgal toxicity, which possibly differed significantly from the former ‘fish killer’ strain in the South China Sea (SCS). Our study revealed that K. mikimotoi FJ-strain exhibited a four-fold higher haemolytic toxicity than the SCS-strain during the late exponential phase. At the microalgal cell density of 3 × 107 cell L−1, the FJ-strain caused abalone mortality of 67% in 48 h, with decreased granulocyte–hyalinocyts ratio and phagocytic activity by 58.96% and 75.64%, respectively, increased haemocyte viability by 4.8-fold and severe gill damage. The toxic effect only worked for the haemolytic toxicity from active algal cells, which were probably produced under the contact of algal cells and abalone gills. However, under exposure to the SCS-strain, more than 80% of individuals survived under aeration. The results indicated that FJ-strain was a new K. mikimotoi ecotype with stronger toxicity. It evoked severe effects, with complete abalone mortality within 24 h under the cascading effect of non-aeration (dissolved oxygen declined to 2.0 mg L−1), when exposed to K. mikimotoi FJ-strain at the above density. Thus, apart from the microalgal toxicity, DO depletion exacerbated the mortality of abalone in the experiment. The massive abalone mortalities in Fujian were probably caused by the combination of microalgal toxic effects and oxygen depletion, leading to immunological depression and histopathological disruption.
Bilinguals may choose to speak a language either at their own will or in response to an external demand, but the underlying neural mechanisms in the two contexts is poorly understood. In the present study, Chinese–English bilinguals named pairs of pictures in three conditions: during forced-switch, the naming language altered between pictures 1 and 2. During non-switch, the naming language used was the same. During free-naming, either the same or different languages were used at participants' own will. While behavioural switching costs were observed during free-naming and forced-switching, neuroimaging results showed that forced language selection (i.e., forced-switch and non-switch) is associated with left-lateralized frontal activations, which have been implicated in inhibitory control. Free language selection (i.e., free-naming), however, was associated with fronto-parietal activations, which have been implicated in self-initiated behaviours. These findings offer new insights into the neural differentiation of language control in forced and free language selection contexts.
Chinese nurses working with immense stress may have issues with burnout during COVID-19 regular prevention and control. There were a few studies investigating status of burnout and associated factors among Chinese nurses. However, the relationships remained unclear.
Objectives
To investigate status and associated factors of nurses’ burnout during COVID-19 regular prevention and control.
Methods
784 nurses completed questionnaires including demographics, Generalized Anxiety Disorder-7, Patient Health Questionnaire-9, Insomnia Severity Index, Impact of Event Scale-revised, Perceived Social Support Scale, Connor–Davidson Resilience Scale, General Self-efficacy Scale and Maslach Burnout Inventory.
Results
310 (39.5%), 393 (50.1%) and 576 (73.5%) of respondents were at high risk of emotional exhaustion (EE), depersonalization (DP) and reduced personal accomplishment (PA). The risk of EE, DP and reduced PA were moderate, high and high. Nurses with intermediate and senior professional rank and title and worked >40 h every week had lower scores in EE. Those worked in low-risk department reported lower scores in PA. Anxiety, post-traumatic stress disorder (PTSD), self-efficacy and social support were influencing factors of EE and DP, while social support and resilience were associated factors of PA.
Conclusion
Chinese nurses’ burnout during COVID-19 regular prevention and control was serious. Professional rank and title, working unit, weekly working hours, anxiety, PTSD, self-efficacy, social support and resilience were associated factors of burnout.
This chapter introduces basic concepts of AI to lawyers, deals with key concepts, the capabilities and limitations of AI, and identifies technological challenges which might require legal responses.
Evidence of the relationship between fecal short-chain fatty acids (SCFA) levels, dietary quality and type 2 diabetes mellitus (T2DM) in rural populations is limited. Here, we aimed to investigate the association between fecal SCFA levels and T2DM and the combined effects of dietar quality on T2DM in rural China. In total, 100 adults were included in the case–control study. Dietary quality was assessed by the Alternate Healthy Eating Index 2010 (AHEI-2010), and SCFA levels were analysed using the GC-MS system. Generalised linear regression was conducted to calculate the OR and 95 % CI to evaluate the effect of SCFA level and dietary quality on the risk of T2DM. Finally, an interaction was used to study the combined effect of SCFA levels and AHEI-2010 scores on T2DM. T2DM participants had lower levels of acetic and butyric acid. Generalised linear regression analysis revealed that the OR (95 % CI) of the highest acetic and butyric acid levels were 0·099 (0·022, 0·441) and 0·210 (0·057, 0·774), respectively, compared with the subjects with the lowest tertile of level. We also observed a significantly lower risk of T2DM with acetic acid levels > 1330·106 μg/g or butyric acid levels > 585·031 μg/g. Moreover, the risks of higher acetic and butyric acid levels of T2DM were 0·007 (95 % CI: 0·001, 0·148), 0·005 (95 % CI: 0·001, 0·120) compared with participants with lower AHEI-2010 scores (all P < 0·05). Acetate and butyrate levels may be important modifiable beneficial factors affecting T2DM in rural China. Improving dietary quality for body metabolism balance should be encouraged to promote good health.
To investigate the influence of clay mineral microstructures on mechanical properties across varying hydration levels, this study employed molecular dynamics simulations to conduct uniaxial tensile strength tests in three orthogonal directions (x, y, z) using illite, montmorillonite and kaolinite. The moisture content was varied from 0% to 10% in 1% increments and from 0% to 50% in 10% increments. The observations highlight the role of water molecules in disrupting the inherent microscopic atomic structure of clay minerals, leading to diminished stability and a decline in tensile strength. As moisture content increased, there was a pronounced increase in the layer spacing of all three clay minerals, indicative of their hydration expansion behaviour. Concurrently, discernible reductions in both the tensile strength and Young's modulus of the clay minerals were observed.
The COVID-19 pandemic has had a profound impact on the mental health of healthcare workers (HCWs). We aimed to identify the factors associated with depression among HCWs during the pandemic. We conducted literature search using eight electronic databases up to July 27 2022. Observational studies with more than 200 participants investigating correlates of depression in HCWs after COVID-19 outbreak were included. We used fixed- and random-effects models to pool odds ratios (ORs) across studies, and Cochran's chi-squared test and I2 statistics to assess study heterogeneity. Publication bias was evaluated by funnel plots. Thirty-five studies involving 44,362 HCWs met the inclusion criteria. Female (OR=1.50, 95% CI [1.23,1.84]), single (OR=1.36, 95% CI [1.21,1.54]), nurse (OR=1.69, 95% CI [1.28,2.25]), history of mental diseases (OR=2.53, 95% CI [1.78,3.58]), frontline (OR=1.79, 95% CI [1.38,2.32]), health anxiety due to COVID-19 (OR=1.88, 95% CI [1.29,2.76]), working in isolation wards (OR=1.98, 95% CI [1.38,2.84]), and insufficient personal protective equipment (OR=1.49, 95% CI [1.33,1.67]) were associated with increased risk of depression. Instead, HCWs with a positive professional prospect (OR=0.34, 95% CI [0.24,0.49]) were less likely to be depressed. This meta-analysis provides up-to-date evidence on the factors linked to depression among HCWs during the COVID-19 pandemic. Given the persistent threats posed by COVID-19, early screening is crucial for the intervention and prevention of depression in HCWs.
Environment-induced epigenetics are involved in diapause regulation, but the molecular mechanism that epigenetically couples nutrient metabolism to diapause regulation remains unclear. In this study, we paid special attention to the significant differences in the level of N6-adenosine methylation (m6A) of dihydroxyacetone phosphate acyltransferase (DHAPAT) and phosphatidate phosphatase (PAP) genes in the lipid metabolism pathway of the bivoltine silkworm (Bombyx mori) strain Qiufeng developed from eggs incubated at a normal temperature (QFHT, diapause egg producer) compared to those from eggs incubated at a low temperature (QFLT, non-diapause egg producer). We knocked down DHAPAT in the pupal stage of the QFLT group, resulting in the non-diapause destined eggs becoming diapausing eggs. In the PAP knockdown group, the colour of the non-diapause destined eggs changed from light yellow to pink 3 days after oviposition, but they hatched as normal. Moreover, we validated that YTHDF3 binds to m6A-modified DHAPAT and PAP mRNAs to promote their stability and translation. These results suggest that RNA m6A methylation participates in the diapause regulation of silkworm by changing the expression levels of DHAPAT and PAP and reveal that m6A epigenetic modification can be combined with a lipid metabolism signal pathway to participate in the regulation of insect diapause traits, which provides a clearer image for exploring the physiological basis of insect diapause.
Echinococcus shiquicus is peculiar to the Qinghai–Tibet plateau of China. Research on this parasite has mainly focused on epidemiological surveys and life cycle studies. So far, limited laboratory studies have been reported. Here, experimental infection of E. shiquicus metacestode in BALB/c mice and Mongolian jirds (Meriones unguiculatus) was carried out to establish alternative laboratory animal models. Intraperitoneal inoculation of metacestode material containing protoscoleces (PSCs) obtained from infected plateau pikas were conducted on BALB/c mice. Furthermore, metacestode material without PSCs deriving from infected BALB/c mice was intraperitoneally inoculated to Mongolian jirds. Experimental animals were dissected for macroscopic and histopathological examination. The growth of cysts in BALB/c mice was infiltrative, and they invaded the murine entire body. Most of the metacestode cysts were multicystic, but a few were unilocular. The cysts contained sterile vesicles, which had no PSCs. The metacestode materials were able to successfully infect new mice. In the jirds model, E. shiquicus cysts were typically formed freely in the peritoneal cavity; the majority of these cysts were free while a small portion adhered loosely to nearby organs. The proportion of fertile cysts was high, and contained many PSCs. The PSCs produced in Mongolian jirds also successfully infected new ones, which confirms that jirds can serve as an alternative experimental intermediate host. In conclusion, a laboratory animal infection was successfully established for E. shiquicus using BALB/c mice and Mongolian jirds. These results provide new models for the in-depth study of Echinococcus metacestode survival strategy, host interactions and immune escape mechanism.
Space-based automatic dependent surveillance-broadcast (ADS-B) receivers can cover thousands of aircraft, each transmitting 6 ⋅ 2 signals per second. As a result, ADS-B signals are very prone to overlap. When the number of aircraft covered by a receiver reaches 3,000, about 90 % of the signals will be overlapping. Overlapped signals can reduce the decoding accuracy of receivers, so that aircraft information cannot be accurately transmitted to the air traffic control (ATC) surveillance system, hence threatening aviation flight safety. It is necessary to propose signal separation algorithms for space-based ADS-B systems. An orthogonal projection linear constrained minimum variance (OPLCMV) algorithm is proposed, which can separate two signals simultaneously based on the linearly constrained minimum variance algorithm by exploiting the characteristics of overlapped signals. Compared with the state-of-the-art extended projection algorithm and the fast independent component analysis algorithm, the OPLCMV method has a higher decoding accuracy for multiple overlapping signals with a small direction difference of arrival or frequency shift. Moreover, the OPLCMV algorithm has a low computational complexity when the number of overlapped signal sources is less than seven.