We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hand, foot, and mouth disease (HFMD) shows spatiotemporal heterogeneity in China. A spatiotemporal filtering model was constructed and applied to HFMD data to explore the underlying spatiotemporal structure of the disease and determine the impact of different spatiotemporal weight matrices on the results. HFMD cases and covariate data in East China were collected between 2009 and 2015. The different spatiotemporal weight matrices formed by Rook, K-nearest neighbour (KNN; K = 1), distance, and second-order spatial weight matrices (SO-SWM) with first-order temporal weight matrices in contemporaneous and lagged forms were decomposed, and spatiotemporal filtering model was constructed by selecting eigenvectors according to MC and the AIC. We used MI, standard deviation of the regression coefficients, and five indices (AIC, BIC, DIC, R2, and MSE) to compare the spatiotemporal filtering model with a Bayesian spatiotemporal model. The eigenvectors effectively removed spatial correlation in the model residuals (Moran’s I < 0.2, p > 0.05). The Bayesian spatiotemporal model’s Rook weight matrix outperformed others. The spatiotemporal filtering model with SO-SWM was superior, as shown by lower AIC (92,029.60), BIC (92,681.20), and MSE (418,022.7) values, and higher R2 (0.56) value. All spatiotemporal contemporaneous structures outperformed the lagged structures. Additionally, eigenvector maps from the Rook and SO-SWM closely resembled incidence patterns of HFMD.
High-power laser systems require thin films with extremely low absorption. Ultra-low-absorption films are often fabricated via ion beam sputtering, which is costly and slow. This study analyzes the impact of doping titanium and annealing on the absorption characteristics of thin films, focusing on composition and structure. The results indicate that the primary factor influencing absorption is composition. Suppressing the presence of electrons or holes that do not form stable chemical bonds can significantly reduce absorption; for amorphous thin films, the structural influence on absorption is relatively minor. Thus, composition control is crucial for fabricating ultra-low-absorption films, while the deposition method is secondary. Ion beam-assisted electron-beam evaporation, which is relatively seldom used for fabricating low-absorption films, was employed to produce high-reflectivity films. After annealing, the absorption at 1064 nm reached 1.70 parts per million. This method offers a cost-effective and rapid approach for fabricating ultra-low-absorption films.
Intramuscular fat (IMF) content is a critical indicator of meat quality in livestock production and possesses significant medical relevance for human health. Betaine, a naturally occurring alkaloid compound, holds considerable potential as a nutritional approach for regulating intramuscular adipogenesis, while its exact efficacy and underlying mechanisms still remain subjects of ongoing debate and investigation. Here, we clarified the enhancing effect of betaine on IMF deposition using porcine, murine, and cellular models. Mechanistically, betaine supplementation leads to a significant increase in nicotinamide adenine dinucleotide phosphate (NADPH) concentration in the liver, serum, and skeletal muscle. Elevated levels of NADPH upregulate the expression of fat mass and obesity-associated (FTO), a well-established N6-methyladenosine (m6A) demethylase, to diminish m6A modification in skeletal muscle and IMF deposition. This process effectively promotes the mitotic clonal expansion and subsequently intramuscular adipogenesis. In summary, our findings expand current understanding of the regulatory role of betaine in IMF deposition and sheds light on the molecular mechanisms underlying its modulation, which is conducive to producing high-quality and healthful pork.
Childhood trauma (CT) increases rates of psychiatric disorders and symptoms, however, the lasting effect of CT into adulthood has little exploration using large-scale samples.
Objectives
This study estimated the prevalence of CT in a large sample of Chinese young adults, examining the risk factors of current psychological symptoms among those with CT experiences.
Methods
117,769 college students were divided into CT and non-CT groups. The propensity score matching method balanced the confounding sociodemographic factors between the two groups, compared to 16 self-reported psychiatric disorders (e.g., depression, anxiety, eating disorder, obsessive-compulsive disorder, autism, social anxiety disorder, post-traumatic stress disorder), and seven current psychiatric symptoms. Hierarchical regression employed the significant risk factors of the seven current psychiatric symptoms.
Results
The prevalence of CT among young adults was 28.76% (95% CI: 28.47–29.04%). Youths with CT experiences reported higher psychiatric disorder rates and current symptom scores (P < 0.001). Sociodemographic factors (females, family disharmony, low socioeconomic status, poor relationship with parents, lower father’s education level) and lifestyle factors (smoking status, alcohol consumption, lack of exercise) were significantly associated with current psychiatric symptoms.
Results
Public health departments and colleges should develop strategies to promote mental health among those who have experienced CT.
This study presents observations of coherent modes (CMs) in a spherical tokamak using a microwave interferometer near the midplane. The CMs within the 30–60 kHz frequency range were observed during electron cyclotron resonance heating only, and the frequency of the CMs increased proportionally with the square root of the electron temperature near $R = 0.7m$. Generally, these modes displayed bursting and chirping signatures with strong density rise and fall. Their appearance indicated an increase in the intensity of hard x rays, suggesting a deterioration in energetic electron confinement. Furthermore, the effect of CMs on the intensity of energetic electron-driven whistler waves was observed. They decreased when CMs were present and gradually increased with the decrease in CM intensity. The CMs may influence the intensity of whistler waves by affecting the energetic electron confinement.
This paper systematically investigated the impact mechanisms of proton irradiation, atomic oxygen irradiation and space debris collision, both individually and in combination, on the laser damage threshold and damage evolution characteristics of HfO2/SiO2 triple-band high-reflection films and fused silica substrates using a simulated near-Earth space radiation experimental system. For the high-reflection film samples, the damage thresholds decreased by 15.38%, 13.12% and 46.80% after proton, atomic oxygen and simulated space debris (penetration) irradiation, respectively. The coupling irradiation of the first two factors resulted in a decrease of 26.93%, while the combined effect of all the three factors led to a reduction of 63.19%. Similarly, the fused silica substrates exhibited the same pattern of laser damage performance degradation. Notably, the study employed high-precision fixed-point in situ measurement techniques to track in detail the microstructural changes, surface roughness and optical-thermal absorption intensity before and after proton and atomic oxygen irradiation at the same location, thus providing a more accurate and comprehensive analysis of the damage mechanisms. In addition, simulations were conducted to quantitatively analyze the transmission trajectories and concentration distribution lines of protons and atomic oxygen incident at specific angles into the target material. The research findings contribute to elucidating the laser damage performance degradation mechanism of transmissive elements in near-Earth space environments and provide technical support for the development of high-damage-threshold optical components resistant to space radiation.
Gender dysphoria is associated with suicidality among transgender and gender-diverse (TGD) people. Gender dysphoria also results in a stress on appearance.
Aims
The objectives of this study were to examine: (a) whether appearance anxiety mediates the effect of gender dysphoria on suicidality; and (b) whether gender identity moderates the mediating effect of appearance anxiety.
Method
A total of 117 769 college and university students were recruited in this cross-sectional study from Jilin Province, China. After screening based on participants’ gender identity, 2352 TGD young people (aged from 15 to 25 years) were divided into three subgroups: female to male (FTM), male to female (MTF) and non-binary. Self-report inventories measured gender dysphoria, suicidality and appearance anxiety. A structural equation model was run to examine the relationships among TGD gender identity, gender dysphoria, appearance anxiety and suicidality.
Results
Among TGD young people, gender dysphoria was significantly positively associated with suicidality (β = 0.15, 95% CI = 0.11–0.18, P < 0.001). Appearance anxiety partially mediated the association between gender dysphoria and suicidality (β = 0.07, 95% CI = 0.05–0.08, P < 0.001). Gender identity moderated the mediating effects: compared with individuals with FTM identity, among those with MTF and non-binary identities, gender dysphoria showed stronger positive effects on appearance anxiety, and appearance anxiety showed greater effects in mediating the association between gender dysphoria and suicidality.
Conclusions
Among TGD young people, gender dysphoria is significantly associated with suicidality via appearance anxiety, with gender identity moderating the mediating effects. Diverse treatments should consider the heterogeneity of TGD subgroups, with the aim of limiting the tendency of gender dysphoria to trigger appearance anxiety, thus further buffering against the risk of suicide.
The single ionization and dissociation of ethanol molecules induced by low-energy electrons (E0 = 90 eV) are investigated using multiparticle coincident momentum spectroscopy. By detecting two outgoing electrons (e1 and e2) and one fragment ion in coincidence, we obtain the energy deposition (E0 − E1 − E2) during electron ionization of the molecule, i.e., the binding energy spectra, for production of the different ionic fragments C2H5OH+, C2H4OH+, COH+, and H3O+. These data allow us to study the ionization channels for different ionic products. In particular, we focus on H3O+ as a product of double hydrogen migration. It is found that this channel mainly originates from the ionization of outer-valance orbitals (3a″,10a′, 2a″, 9a′, 8a′, 1a″, and 7a′). Additionally, there are minor contributions from the inner-valence orbitals such as 6a′, 5a′, and 4a′. Quantum chemistry calculations show two fragmentation pathways: concerted and sequential processes for formation of H3O+.
This study presents novel findings on stochastic electron heating via a random electron cyclotron wave (ECW) in a spherical tokamak. Hard x ray measurements demonstrate the time evolution of hard x ray counts at different energy bands, consistent with predictions from the stochastic heating model. The ECW heating rate shows a positive correlation with applied power, confirming the effectiveness of stochastic heating. Remarkably, the ECW-driven plasma current remains insensitive to ECW incidence angle, consistent with model predictions. The observed stochastic heating of electrons offers potential for exploring innovative non-inductive current drive modes in spherical tokamaks. This research contributes to the understanding of plasma behaviour and motivates the development of new models for non-inductive current drive in fusion devices.
Path planning is a key research issue in the field of unmanned aerial vehicle (UAV) applications. In practical applications, multi-objective path planning is usually required for multi-UAVs, so this paper proposes the improved balanced artificial bee colony (IB-ABC) algorithm to optimize multi-objective path planning. The algorithm adopts the ABC algorithm that emphasizes the global search capability, which is based on iterative feedback information. It uses single-element points, multi-element points, and iteration constraints to optimize the strategies of employed bees, follower bees, and scout bees, respectively. In terms of time and priority, simulation experiments prove that the IB-ABC algorithm can balance local and global search capabilities, accelerate the speed of convergence, and realize multi-UAV path planning in complex mountain environments.
Epidemiological studies on the association between the low carbohydrate diet (LCD) score and CVD risk factors have limited and inconsistent results. Data are from the baseline survey of Community-based Cohort Study on Nervous System Diseases. A total of 4609 adults aged ≥ 18 years were included in the study. Dietary data were assessed using a validated semi-quantitative FFQ. Multivariable logistic regression analyses were used to estimate relationships of three LCD scores with low HDL-cholesterol, high LDL-cholesterol, hypercholesterolaemia, hypertriacylglycerolaemia, impaired fasting glucose (IFG), high blood pressure and hyperuricaemia after adjusting for potential confounders. A higher LCD score was negatively associated with low HDL-cholesterol (OR: 0·65 (95 % CI 0·50, 0·83), P = 0·0001) and IFG (OR: 0·65 (95 % CI 0·51, 0·81), P = 0·001) after the final adjustment. However, there are sex differences in this result. Males in the highest quintile of the animal-based or plant-based LCD scores showed a decreased risk of low HDL-cholesterol, and females in the highest quintile of the animal-based or plant-based LCD scores showed a decreased risk of IFG than those in the lowest quintile of the LCD scores. These results suggest that sex differences should be considered when using LCD to treat dyslipidaemia and reduce fasting blood glucose.
Creativity is crucial in design. In recent years, growing computational methods are applied to improve the creativity of design. This paper aims to explore an approach to generate creative design images with specific feature or design style. A Generative Adversarial Network model is applied in the approach to learn the specific design style. The target products will be projected into the latent space of model to transfer their styles and generate images. The generated images combine the features of the specific design style and the features of the target product. In the experiment, the approach using the generated images to inspire the human designer to generate the creative design in according styles. According to the primary verification by participants, the generated images can bring novelty and surprise to participants, which gain the positive impact on human creativity.
From June 28 to November 22, 2018, the Chinese People’s Liberation Army Navy – PLA(N) – Peace Ark hospital ship had conducted Mission Harmony 2018, providing humanitarian medical assistance and carrying out international cooperation, in 4 Pacific island countries and 6 Central and South American countries. Compared with its application only in onshore outreach medical teams in the previous Mission Harmony, portable ultrasonography was used both onboard and onshore in Mission Harmony 2018. The purpose of this study was to assess the performance of onboard portable ultrasonography in PLA(N) Peace Ark hospital ship during Mission Harmony-2018, share our onboard working experience, and provide a reference for humanitarian assistance missions in the future. A retrospective review was performed on a cohort of patients checked by onboard portable ultrasonography. Patients’ gender, age, the distribution of examined organs, and multiple applications of the portable ultrasonography were analyzed. Some limitations of portable ultrasonography on the mission and possible improvements in the future were also discussed. A total of 5277 cases (mean age: 43.74 years; range: 2 months–105 years) of ultrasound examinations were performed during the mission; among them, 3126 (59.2%) cases were performed by portable ultrasonography, including 3024 onboard cases and 102 onshore cases. The portable ultrasonography had been applied in many scenarios, for example, onboard emergency triage process, onboard bedside medical support, and onshore outreach medical service, which had become one of the indispensable auxiliary examination methods for its compatibility, portability, and flexibility. The onboard deployment of portable ultrasonography played a versatile and irreplaceable role in the humanitarian medical assistance and medical cooperation carried out by the PLA(N) Peace Ark hospital ship, and will contribute to such kind of missions in the future.
Not all plant-based and animal foods exert the same health effects due to their various nutrient compositions. We aimed to assess the quality of plant-based v. animal foods in relation to mortality in a prospective cohort study. Using data collected from a nationally representative sample of 36 825 adults in the National Health and Nutrition Examination Survey 1999–2014, we developed a de novo Comprehensive Diet Quality Index (cDQI) that assesses the quality of seventeen foods based on the healthfulness and separately scored the quality of eleven plant-based foods in a plant-based Diet Quality Index (pDQI) and six animal foods in an animal-based Diet Quality Index (aDQI). Mortality from all causes, heart disease and cancer were obtained from linkage to the National Death Index up to 31 December 2015. Cox proportional hazard models were used to estimate hazard ratios (HR) and 95 % CI after multivariable adjustments. During a median follow-up of 8·3 years, 4669 all-cause deaths occurred, including 798 deaths due to heart disease and 1021 due to cancer. Compared with individuals in the lowest quartile, those in the highest quartile of cDQI had a lower risk of all-cause mortality (HR 0·75, 95 % CI 0·65, 0·86; Ptrend < 0·001), which largely reflected the inverse relationship between quality of plant-based foods (pDQI) and all-cause mortality (HR 0·66, 95 % CI 0·58, 0·74; Ptrend < 0·001). No independent association was found for the quality of animal foods (aDQI) and mortality. Our results suggest that consuming healthy plant-based foods is associated with lower all-cause mortality among US adults.
This paper presents a soft robot which can imitate the crawling locomotion of an earthworm. Locomotion of the robot can be achieved by expanding and contracting the body that is made of flexible material. A link of the earthworm-like robot is combined with three modules, and a multi-cavity earthworm-like soft robot is combined with multiple links. The multiple links of the earthworm-like soft robot are fabricated by silicone in the three-dimensional printed customized molds. Experiments on a single module, two-links, and three-links show that the soft robot can move and bend on condition of modules extension and contraction in a specified gait. The development of the earthworm-like soft robot shows a great prospect in many complicated environments such as pipeline detection.
We fabricated a van der Waals heterostructure of WS2–ReSe2 and studied its charge-transfer properties. Monolayers of WS2 and ReSe2 were obtained by mechanical exfoliation and chemical vapor deposition, respectively. The heterostructure sample was fabricated by transferring the WS2 monolayer on top of ReSe2 by a dry transfer process. Photoluminescence quenching was observed in the heterostructure, indicating efficient interlayer charge transfer. Transient absorption measurements show that holes can efficiently transfer from WS2 to ReSe2 on an ultrafast timescale. Meanwhile, electron transfer from ReSe2 to WS2 was also observed. The charge-transfer properties show that monolayers of ReSe2 and WS2 form a type-II band alignment, instead of type-I as predicted by theory. The type-II alignment is further confirmed by the observation of extended photocarrier lifetimes in the heterostructure. These results provide useful information for developing van der Waals heterostructure involving ReSe2 for novel electronic and optoelectronic applications and introduce ReSe2 to the family of two-dimensional materials to construct van der Waals heterostructures.
It is urgent to develop new antimalarial drugs with good therapeutic effects to address the emergence of drug resistance. Here, the artelinic acid-choline derivative (AD) was synthesized by dehydration reaction and esterification reaction, aimed to avoid the emergence of drug resistance by synergistic effect of artemisinins and choline derivative, which could compete with choline for rate-limiting enzymes in the phosphatidylcholine (PC) biosynthetic pathway. AD was formulated into liposomes (ADLs) by the thin-film hydration method. Efficacy of ADLs was evaluated by Peters 4-day suppression test. The suppression percentage against Plasmodium yoelii BY265 (PyBY265) in ADLs group was higher than those of positive control groups (dihydroartemisinin liposomes, P < 0.05) and other control groups (P ⩽ 0.05) at the doses of 4.4, 8.8, 17.6 µmol (kg·d)−1, respectively. The negative conversion fraction, recrudescence fraction and survival fraction of ADLs group were superior to other control groups. Pharmacokinetics in rats after intravenous injection suggested that ADLs exhibited higher exposure levels (indexed by area under concentration-time curve) than that of AD solution, artelinic acid liposomes or artelinic acid solution (P < 0.01). Taken together, ADLs exhibited promising antimalarial efficacy and pharmacokinetic characteristics.
Metal oxides are promising candidates as the anodes of next-generation lithium ion batteries. However, the low electronic conductivities hinder their practical applications. Herein, through a facile calcination process using ammonium bicarbonate (NH4HCO3) as the N source, the nitrogen heteroelement was introduced into the ZnO/CoO micro-/nanospheres, which greatly improves the conductivity of the composites. As the lithium-ion battery anode, the N-doped ZnO/CoO micro-/nanosphere demonstrates much enhanced electrochemical performance. It displays a high initial capacity of 911.8 mA h/g at a current density of 0.2 A/g and long-term cycling stability, with a reversible capacity of 977.8 mA h/g remained after 500 cycles at a current density of 1 A/g. Furthermore, the N-doped ZnO/CoO composite presents an outstanding rate performance, with 605 mA h/g remained even at 5 A/g. The excellent electrochemical properties make N-doped ZnO/CoO micro-/nanospheres a promising candidate as high-performance anodes for next-generation rechargeable LIBs.
Energy chirp compensation of the electron bunch (e-bunch) in a laser wakefield accelerator, which is caused by the phase space rotation in the gradient wakefield, has been applied in many schemes for low energy spread e-bunch generation. We report the experimental observation of energy chirp compensation of the e-bunch in a nonlinear laser wakefield accelerator with a negligible beam loading effect. By adjusting the acceleration length using a wedge-roof block, the chirp compensation of the accelerated e-bunch was observed via an electron spectrometer. Apart from this, some significant parameters for the compensation process, such as the longitudinal dispersion and wakefield slope at the bunch position, were also estimated. A detailed comparison between experiment and simulation shows good agreement of the wakefield and bunch parameters. These results give a clear demonstration of the longitudinal characteristics of the wakefield in a plasma and the bunch dynamics, which are important for better control of a compact laser wakefield accelerator.