We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Background: Cerebral palsy (CP) is a neuromotor disorder whereby gait abnormalities are predominant. Motion analysis is instrumental in management. While 3D kinematic labs exist, they are costly to operate, and the expertise required to interpret limits their availability to only a handful of facilities. In response, we have developed an Automated Intelligence (AI) driven pipeline to automate gait evaluation using 2-dimensional video. We assess the performance of this tool in comparison to traditional evaluation using visual assessment by trained human expert. Methods: A dataset of 109 patients with CP (6–37 years) (GMFCS I – II) was processed using our tool. The Edinburgh Visual Gait Score (EVGS) was derived using videos capturing sagittal and coronal views. Algorithm performance was determined by comparing automated EVGS scores against clinical expert scoring. Results: The AI pipeline successfully analysed 105/109 patient videos. For most EVGS parameters (14/17), the algorithm demonstrated moderate to high accuracy (70-94%), while 3 parameters (hindfoot valgus/varus, maximum lateral trunk shift, pelvic rotation at midstance) demonstrated lower accuracy (58-62%). Conclusions: This study validates the feasibility of an AI-augmented pipeline for automating EVGS-based gait assessments. With ongoing development, this technology has potential to improve accessibility to gait analysis and allows deployment outside of traditional settlings.
With numerous applications of coilable masts in high-precision space application scenarios, there are also greater demands on the accuracy of their dynamic modelling and analysis. The modelling of hinges is a critical issue in the dynamic modelling of coilable masts, which significantly affects the accuracy of the dynamic response analysis. For coilable masts, the rotational effect is the most important problem in hinge modelling. However, few studies have focused on this topic. To address this problem, the concept of hinge equivalent rotational stiffness is proposed in this paper to describe the rotational effect of the coilable mast hinges. After that, a new coilable mast dynamic model containing the undetermined hinge equivalent rotational stiffness is introduced, and an identification method for the hinge equivalent rotational stiffness based on the hammer test is proposed. Finally, the dynamic modelling method is validated through an actual coilable mast example, and the analysis and test results show that the accuracy of the dynamic model established by the proposed method in this paper is greater than that of the traditional model.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
A key step toward understanding psychiatric disorders that disproportionately impact female mental health is delineating the emergence of sex-specific patterns of brain organisation at the critical transition from childhood to adolescence. Prior work suggests that individual differences in the spatial organisation of functional brain networks across the cortex are associated with psychopathology and differ systematically by sex.
Aims
We aimed to evaluate the impact of sex on the spatial organisation of person-specific functional brain networks.
Method
We leveraged person-specific atlases of functional brain networks, defined using non-negative matrix factorisation, in a sample of n = 6437 youths from the Adolescent Brain Cognitive Development Study. Across independent discovery and replication samples, we used generalised additive models to uncover associations between sex and the spatial layout (topography) of personalised functional networks (PFNs). We also trained support vector machines to classify participants’ sex from multivariate patterns of PFN topography.
Results
Sex differences in PFN topography were greatest in association networks including the frontoparietal, ventral attention and default mode networks. Machine learning models trained on participants’ PFNs were able to classify participant sex with high accuracy.
Conclusions
Sex differences in PFN topography are robust, and replicate across large-scale samples of youth. These results suggest a potential contributor to the female-biased risk in depressive and anxiety disorders that emerge at the transition from childhood to adolescence.
Ice shelves affect the stability of ice sheets by supporting the mass balance of ice upstream of the grounding line. Marine ice, formed from supercooled water freezing at the base of ice shelves, contributes to mass gain and affects ice dynamics. Direct measurements of marine ice thickness are rare due to the challenges of borehole drilling. Here we assume hydrostatic equilibrium to estimate marine ice distribution beneath the Amery Ice Shelf (AIS) using meteoric ice-thickness data obtained from radio-echo sounding collected during the Chinese National Antarctic Research Expedition between 2015 and 2019. This is the first mapping of marine ice beneath the AIS in nearly 20 years. Our new estimates of marine ice along two longitudinal bands beneath the northwest AIS are spatially consistent with earlier work but thicker. We also find a marine ice layer exceeding 30 m of thickness in the central ice shelf and patchy refreezing downstream of the grounding line. Thickness differences from prior results may indicate time-variation in basal melting and freezing patterns driven by polynya activity and coastal water intrusions masses under the ice shelf, highlighting that those changes in ice–ocean interaction are impacting ice-shelf stability.
A major subglacial lake, Lake Snow Eagle (LSE), was identified in East Antarctica by airborne geophysical surveys. LSE, contained within a subglacial canyon, likely hosts a valuable sediment record of the geological and glaciological changes of interior East Antarctica. Understanding past lake activity is crucial for interpreting this record. Here, we present the englacial radiostratigraphy in the LSE area mapped by airborne ice-penetrating radar, which reveals a localized high-amplitude variation in ice unit thickness that is estimated to be ∼12 ka old. Using an ice-flow model that simulates englacial stratigraphy, we investigate the origin of this feature and its relationship to changes in ice dynamical boundary conditions. Our results reveal that local snowfall redistribution initiated around the early Holocene is likely the primary cause, resulting from a short-wavelength (∼10 km) high-amplitude (∼20 m) ice surface slope variation caused by basal lubrication over a large subglacial lake. This finding indicates an increase in LSE water volume during the Holocene, illustrating the sensitivity in volume of a major topographically constrained subglacial lake across a single glacial cycle. This study demonstrates how englacial stratigraphy can provide valuable insight into subglacial hydrological changes before modern satellite observations, both for LSE and potentially at other locations.
In low- and middle-income countries, fewer than 1 in 10 people with mental health conditions are estimated to be accurately diagnosed in primary care. This is despite more than 90 countries providing mental health training for primary healthcare workers in the past two decades. The lack of accurate diagnoses is a major bottleneck to reducing the global mental health treatment gap. In this commentary, we argue that current research practices are insufficient to generate the evidence needed to improve diagnostic accuracy. Research studies commonly determine accurate diagnosis by relying on self-report tools such as the Patient Health Questionnaire-9. This is problematic because self-report tools often overestimate prevalence, primarily due to their high rates of false positives. Moreover, nearly all studies on detection focus solely on depression, not taking into account the spectrum of conditions on which primary healthcare workers are being trained. Single condition self-report tools fail to discriminate among different types of mental health conditions, leading to a heterogeneous group of conditions masked under a single scale. As an alternative path forward, we propose improving research on diagnostic accuracy to better evaluate the reach of mental health service delivery in primary care. We recommend evaluating multiple conditions, statistically adjusting prevalence estimates generated from self-report tools, and consistently using structured clinical interviews as a gold standard. We propose clinically meaningful detection as ‘good-enough’ diagnoses incorporating multiple conditions accounting for context, health system and types of interventions available. Clinically meaningful identification can be operationalized differently across settings based on what level of diagnostic specificity is needed to select from available treatments. Rethinking research strategies to evaluate accuracy of diagnosis is vital to improve training, supervision and delivery of mental health services around the world.
This paper provides a statistical framework for estimating higher-order characteristics of the response time distribution, such as the scale (variability) and shape. Consideration of these higher order characteristics often provides for more rigorous theory development in cognitive and perceptual psychology (e.g., Luce, 1986). RT distribution for a single participant depends on certain participant characteristics, which in turn can be thought of as arising from a distribution of latent variables. The present work focuses on the three-parameter Weibull distribution, with parameters for shape, scale, and shift (initial value). Bayesian estimation in a hierarchical framework is conceptually straightforward. Parameter estimates, both for participant quantities and population parameters, are obtained through Markov Chain Monte Carlo methods. The methods are illustrated with an application to response time data in an absolute identification task. The behavior of the Bayes estimates are compared to maximum likelihood (ML) estimates through Monte Carlo simulations. For small sample size, there is an occasional tendency for the ML estimates to be unreasonably extreme. In contrast, by borrowing strength across participants, Bayes estimation “shrinks” extreme estimates. The results are that the Bayes estimators are more accurate than the corresponding ML estimators.
Leader exemplification involves implicit and explicit claims of high moral values made by a leader. We employed a 2 × 3 experimental design with samples of 265 students in Study 1 and 142 working adults in Study 2 to examine the effects of leader exemplification (exemplification versus no exemplification) and ethical conduct (self-serving, self-sacrificial, and self-other focus) on perceived leader authenticity, trust in leader, and organizational advocacy. In Study 1, we found that exemplification produced elevated levels of perceived authenticity, trust, and advocacy in the form of employment and investment recommendations. We also showed that leader ethical conduct moderated this effect, as ratings were highest following a leader’s self-sacrificial conduct, lowest for self-serving conduct, and moderate for conduct reflecting self-other concerns. In Study 2, we replicated these findings for perceived authenticity and trust, but not organizational advocacy, which yielded mixed results. The leadership implications and future research directions are discussed.
Cross-linguistic interactions are the hallmark of bilingual development. Theoretical perspectives highlight the key role of cross-linguistic distances and language structure in literacy development. Despite the strong theoretical assumptions, the impact of such bilingualism factors in heritage-language speakers remains elusive given high variability in children's heritage-language experiences. A longitudinal inquiry of heritage-language learners of structurally distinct languages – Spanish–English and Chinese–English bilinguals (N = 181, Mage = 7.57, measured 1.5 years apart) aimed to fill this gap. Spanish–English bilinguals showed stronger associations between morphological awareness skills across their two languages, across time, likely reflecting cross-linguistic similarities in vocabulary and lexical morphology between Spanish and English. Chinese–English bilinguals, however, showed stronger associations between morphological and word reading skills in English, likely reflecting the critical role of morphology in spoken and written Chinese word structure. The findings inform theories of literacy by uncovering the mechanisms by which bilingualism factors influence child literacy development.
In this paper, we investigate the attitude manoeuver planning and tracking control of the flexible satellite equipped with a coilable mast. Due to its flexible beamlike structure, the coilable mast experiences bending and torsional modal vibrations in multi-direction. The complex nonlinear coupling and other external disturbances significantly impact the achievement of high-precision attitude control. To overcome these challenges, a robust attitude tracking controller is proposed for easy implementation by the Attitude Determination and Control System (ADCS). The controller consists of a disturbance compensator, feedforward controller and output feedback controller. The compensator, based on a Nonlinear Disturbance Observer (NDO), effectively compensates for the cluster disturbances caused by vibrations, environmental factors and parameter perturbations. The feedforward controller tracks the desired path in the nominal satellite model. Furthermore, the output feedback controller enables large-angle manoeuver control of the satellite and evaluates the suppression effect of the controlled output on the observation error of cluster disturbances used the ${L_2}$-gain. Simulation results demonstrate that the proposed controller successfully achieves high-precision attitude tracking control during large-angle manoeuvering.
A commercial bentonite (primarily smectite) from Fischer Scientific Company (F bentonite) and a natural bentonite from Peru (P bentonite) were used in the preparation of pillared clays with polyoxymetal cations of Al that were subsequently modified with Ce and La. Several Al/metal ratios (5 and 9) were used to investigate the effects on the thermal and hydrothermal stability of these synthetic clays. The structure of these materials was studied by X-ray diffraction. Isotherms were determined by N2 adsorption. Thermal stability was determined using thermogravimetric (TG) measurements and ara-monia-TPD (temperature programmed desorption) was used to obtain acidity data. These materials exhibited basal spacings from 16 to 20 Å, with surface areas from 239 to 347 m2g−1, with microporosity contributing from 50 to 80% of the total surface area. Pillared clays prepared from F bentonite generally showed larger basal spacings and surface areas than those prepared from P bentonite. Pillared clays modified with Ce or La did not show any apparent structural changes relative to the Al-pillared clays. Pillared clays modified with Ce and La had similar acid properties as Al-pillared clays. In contrast, the thermal and hydrothermal stabilities of these materials were greater than Al-pillared clays. However, Ce-pillared clay appears to be more effective than La-pillared clay in delaying the dehydroxylation of pillared clays with increasing temperature. The intercalation of Ce and La into Al-pillared clays improved the thermal stability, which may increase the utility of these materials as catalysts.
Bentonite- and sepiolite-supported copper catalysts have been prepared either by adsorption of Cu(II) from aqueous solutions of copper nitrate at pH ~4.5 or by adsorption of a [Cu(NH3)4]2+ complex from an ammonia solution of CuSO4 at pH ~9.5. The structure and composition of the calcined preparations have been studied by X-ray diffraction, chemical analysis, and energy dispersive X-rays. Textural characteristics have derived from the analysis of the adsorption-desorption isotherms of N2. All catalysts have been tested for the dehydrogenation of methanol to methyl formate. For this reaction, bentonite-based catalysts were found to have very little activity, which indicates that copper located in the inter-lamellar spaces is inaccessible to methanol molecules. On the contrary, copper-sepiolite catalysts showed a very high specific activity even for those catalysts with a very low copper content. The chemical state of copper in the catalysts on-stream has been revealed by X-ray photoelectron spectroscopy and X-ray-induced Auger techniques. In most of the catalysts Cu+ is the dominant copper species.
Ultra-processed plant-based foods, such as plant-based burgers, have gained in popularity. Particularly in the out-of-home (OOH) environment, evidence regarding their nutritional profile and environmental sustainability is still evolving. Plant-based burgers available at selected OOH sites were randomly sampled in Amsterdam, Copenhagen, Lisbon and London. Plant-based burgers (patty, bread and condiment) (n 41) were lab analysed for their energy, macronutrients, amino acids and minerals content per 100 g and serving and were compared with reference values. For the plant-based burgers, the median values per 100 g were 234 kcal, 20·8 g carbohydrates, 3·5 g dietary fibre and 12·0 g fat, including 0·08 g TFS and 2·2 g SFA. Protein content was 8·9 g/100 g, with low protein quality according to amino acid composition. Median Na content was 389 mg/100 g, equivalent to 1 g salt. Compared with references, the median serving provided 31% of energy intake based on a 2000 kcal per day and contributed to carbohydrates (17–28%), dietary fibre (42%), protein (40%), total fat (48%), SFA (26%) and Na (54%). One serving provided 15–23% of the reference values for Ca, K and Mg, while higher contributions were found for Zn, Mn, P and Fe (30–67%). The ultra-processed plant-based burgers provide protein, dietary fibre and essential minerals and contain relatively high levels of energy, Na and total fats. The amino acid composition indicated low protein quality. The multifaceted nutritional profile of plant-based burgers highlights the need for manufacturers to implement improvements to better support healthy dietary habits, including reducing energy, Na and total fats.
Recurrent respiratory papillomatosis is a benign manifestation of human papillomavirus types 6 and 11 in the respiratory tract. Disease is recurrent, and factors predicting these recurrences and severity of disease are incompletely characterised. This retrospective cohort study examined the relationship of immunosuppression with recurrent respiratory papillomatosis morbidity.
Methods
A retrospective cohort of 97 adult patients with recurrent respiratory papillomatosis treated at a tertiary referral centre from 2005 to 2020 was conducted. Measures assessed included inter-surgical interval, Voice Handicap Index (‘VHI-10’) and anatomical Derkay scores.
Results
Bivariate analyses comparing average inter-surgical interval, Voice Handicap Index and Derkay scores in immunosuppressed and healthy patients were insignificant. When controlling for diabetes mellitus and comparing immunosuppressed to healthy patients, inter-surgical interval and Voice Handicap Index change were insignificant (p = 0.458 and p = 0.465, respectively).
Conclusion
Recurrent respiratory papillomatosis morbidity for immunosuppressed patients did not significantly differ from that of immunocompetent patients.
In a recent survey of nematodes associated with tobacco in Shandong, China, the root-lesion nematode Pratylenchus coffeae was identified using a combination of morphology and molecular techniques. This nematode species is a serious parasite that damages a variety of plant species. The model plant benthi, Nicotiana benthamiana, is frequently used to study plant-disease interactions. However, it is not known whether this plant species is a host of P. coffeae. The objectives of this study were to evaluate the parasitism and pathogenicity of five populations of the root-lesion nematode P. coffeae on N. benthamiana.N. benthamiana seedlings with the same growth status were chosen and inoculated with 1,000 nematodes per pot. At 60 days after inoculation, the reproductive factors (Rf = final population densities (Pf)/initial population densities (Pi)) for P. coffeae in the rhizosphere of N. benthamiana were all more than 1, suggesting that N. benthamiana was a good host plant for P. coffeae.Nicotiana. benthamiana infected by P. coffeae showed weak growth, decreased tillering, high root reduction, and noticeable brown spots on the roots. Thus, we determined that the model plant N. benthamiana can be used to study plant-P. coffeae interactions.
While the role of benzodiazepines (BZDs) has been well established for anxiety and related disorders, there are significant concerns about BZD dependence, withdrawal, and tolerance. There is a lot of ambiguity regarding the potential long-term effects of BZDs on mental health. However, the risk of developing subsequent other substance use disorders is in question.
Objectives
In this electronic medical record (EMR) based retrospective cohort study, the study cohort was defined as patients between the ages of 18 and 65 with anxiety disorders (ICD-10-CM: F40-F48) prescribed with at least one BZD; the control cohort was defined as patients between the ages of 18 and 65 with anxiety disorders (ICD-10-CM: F40-F48) with no BZD prescription during the five-year timeframe examined. We excluded patients with pre-existing substance use disorders (ICD-10-CM: F10-F19), et al.
Methods
We collected data from TriNetX Research database, a real-time international EMR network, from September 2017 to September 2022. Patients in the two cohorts were matched by gender, age, race, ethnicity, and common medical conditions at a 1:1 ratio by propensity scoring and then underwent Kaplan–Meier analysis and association analysis.
Results
A total of 626,754 patients were identified and matched for analysis. Patients in the study cohort were more likely to be female (67.6% vs. 66.7%, p < 0.001), non-Hispanic (65.8% vs. 62.5%, p < 0.001) and white (72.8% vs. 69.1%, p < 0.001). Kaplan–Meier analysis showed the survival probability at the end of the time window was 94.1% for the control cohort and 89.5% for the study cohort (Hazard ratio, 2.20; 95% CI, 2.16-2.25; P < 0.001) in all type of substance use disorders. (Table 1)Table 1.
Hazard ratio of substance use disorders difference in BZD cohort versus the control cohort.
Substance use disorders was defined as Mental and behavioral disorders due to psychoactive substance use (ICD-10-CM: F10-F19).
Conclusions
Patients with an anxiety disorder who were prescribed BZDs are at higher risk of not only BZD dependence but all types of substance use disorders than a matched cohort not prescribed BZDs. Given this notable association, clinicians should be cautious while prescribing BZDs and inform the patient about the risks associated with their utilization.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
People often make more rational choices between monetary prospects when their choices will be played out many times rather than just once. For example, previous research has shown that the certainty effect and the possibility effect (two common-ratio effects that violate expected utility theory) are eliminated in multiple-play decisions. This finding is challenged by seven new studies (N = 2391) and two small meta-analyses. Results indicate that, on average, certainty and possibility effects are reduced but not eliminated in multiple-play decisions. Moreover, in our within-participants studies, the certainty and possibility choice patterns almost always remained the modal or majority patterns. Our primary results were not reliably affected by prompts that encouraged a long-run perspective, by participants’ insight into long-run payoffs, or by participants’ numeracy. The persistence of common-ratio effects suggests that the oft-cited benefits of multiple plays for the rationality of decision makers’ choices may be smaller than previously realized.