We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
We present the Evolutionary Map of the Universe (EMU) survey conducted with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU aims to deliver the touchstone radio atlas of the southern hemisphere. We introduce EMU and review its science drivers and key science goals, updated and tailored to the current ASKAP five-year survey plan. The development of the survey strategy and planned sky coverage is presented, along with the operational aspects of the survey and associated data analysis, together with a selection of diagnostics demonstrating the imaging quality and data characteristics. We give a general description of the value-added data pipeline and data products before concluding with a discussion of links to other surveys and projects and an outline of EMU’s legacy value.
Guideline-based tobacco treatment is infrequently offered. Electronic health record-enabled patient-generated health data (PGHD) has the potential to increase patient treatment engagement and satisfaction.
Methods:
We evaluated outcomes of a strategy to enable PGHD in a medical oncology clinic from July 1, 2021 to December 31, 2022. Among 12,777 patients, 82.1% received a tobacco screener about use and interest in treatment as part of eCheck-in via the patient portal.
Results:
We attained a broad reach (82.1%) and moderate response rate (30.9%) for this low-burden PGHD strategy. Patients reporting current smoking (n = 240) expressed interest in smoking cessation medication (47.9%) and counseling (35.8%). As a result of patient requests via PGHD, most tobacco treatment requests by patients were addressed by their providers (40.6–80.3%). Among patients with active smoking, those who received/answered the screener (n = 309 ) were more likely to receive tobacco treatment compared with usual care patients who did not have the patient portal (n = 323) (OR = 2.72, 95% CI = 1.93–3.82, P < 0.0001) using propensity scores to adjust for the effect of age, sex, race, insurance, and comorbidity. Patients who received yet ignored the screener (n = 1024) compared with usual care were also more likely to receive tobacco treatment, but to a lesser extent (OR = 2.20, 95% CI = 1.68–2.86, P < 0.0001). We mapped observed and potential benefits to the Translational Science Benefits Model (TSBM).
Discussion:
PGHD via patient portal appears to be a feasible, acceptable, scalable, and cost-effective approach to promote patient-centered care and tobacco treatment in cancer patients. Importantly, the PGHD approach serves as a real world example of cancer prevention leveraging the TSBM.
The Arctic is at the forefront of climate change, undergoing some of the most rapid environmental transformations globally. Here, we examine the impacts of climate change on the livelihoods in the coastal Inuit community of Hopedale, Nunatsiavut, Canada. The study examines recently evolved adaptation strategies employed by Inuit and the challenges to these adaptations. We document changing sea ice patterns, changing weather patterns and the impact of invasive species on food resources and the environment. Utilising knowledge co-production and drawing upon Indigenous knowledge, we monitor the changes and multiple stresses through direct observations, engagement with rights holders and community experiences to characterise climate risks and associated changes affecting livelihoods. We use both decolonising research and participatory methodologies to develop collaboration and partnership, ensuring that monitoring reflects local priorities and realities while also fostering trust and collaboration. We showcase that monitoring environmental trends involves more than data collection; it includes observing and analysing how environmental changes affect community well-being, particularly in terms of food security, cultural practices, economic activities, mental health, sea ice changes and weather patterns. The paper contributes to a nuanced understanding of Inuit resilience and experiences in confronting climate risks and the broader implications for Indigenous communities confronting climate challenges.
Functional Neurosurgery modifies CNS circuits to effect change within or outside the nervous system. Most commonly, Functional procedures are performed to treat movement disorders, chronic pain, spasticity and epilepsy. Whilst regarded as a predominantly elective subspecialty, emergent scenarios are encountered. The combination of their relative rarity couple with the niche nature of the subspecialty may engender anxiety amongst neurosurgery trainees. This Element overviews some more common emergency scenarios which may be encountered comprising suspected malfunction of intra-thecal drug delivery devices, deep brain and spinal cord stimulators. Status Trigeminus and an approach to investigations with a neuromodulation device in situ are also covered.
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
Viloxazine ER (extended-release capsules; Qelbree®) is a nonstimulant medication, FDA-approved for ADHD in children (≥6 years) and adults. Efficacy and safety for children and adolescents were evaluated in one phase 2 [NCT02633527]and four phase 3 [NCT03247517, NCT03247556, NCT03247530, and NCT03247543], double-blind (DB), placebo-controlled trials that fed into a long-term, open-label extension (OLE) trial [NCT02736656]. Here we report the findings from this OLE trial.
Methods
Participants completing the DB trials were eligible for the OLE. Viloxazine ER was initiated at 100 mg/day (children) or 200 mg/day (adolescents) and adjusted (if needed) over a 12-week Dose-Optimization Period (up to 400 mg/day [children] or 600 mg/day [adolescents]). Maintenance treatment then continued up to 72 months. Safety assessments included adverse events (AEs), clinical laboratory tests, vital signs, ECG (12-lead), and the Columbia Suicide Severity Rating Scale (C-SSRS). Efficacy assessments included the ADHD Rating Scale, 4th (Phase 2) or 5th (Phase 3) Edition (ADHD-RS-IV/5), and the Clinical Global Impression-Improvement (CGI-I) scale. Efficacy was assessed relative to DB baseline at study visits ˜ 3 months apart. Two response measures, 50% improvement in ADHD-RS-IV/5 Total score and CGI-I score of 1-2, were also evaluated.
Results
1100 individuals (646 children; 454 adolescents; 66.5% male/33.5% female) received treatment. Median (range) exposure to viloxazine ER was 260 (1 to 1896) days. AEs were reported by 57.3% participants, most commonly (≥5%) nasopharyngitis (9.7%), somnolence (9.5%), headache (8.9%) decreased appetite (6.0%), and fatigue (5.7%). AEs were mostly mild or moderate in severity (3.9% reported any severe AE); AEs led to viloxazine ER discontinuation for 8.2%. The mean (SD) changes from DB baseline in ADHD-RS IV/5 Total score were -17.0 (14.18) (viloxazine ER) and -11.2 (13.19) (placebo) at the last DB study visit, 24.3 (11.96) at OLE Month 3, and 22.4 (13.62) at participants’ last OLE study visit. ADHD-RS-IV/5 and CGI-I responder rates each exceeded 65% at all OLE visits following Dose-Optimization.
Conclusions
The safety and efficacy of viloxazine ER were maintained with long-term use in children and adolescents with ADHD. No new safety concerns emerged, and efficacy results suggested potential for continued improvement over that seen during DB treatment.
There is growing evidence that the broadband radio spectral energy distributions (SEDs) of star-forming galaxies (SFGs) contain a wealth of complex physics. In this paper we aim to determine the physical emission and loss processes causing radio SED curvature and steepening to see what observed global astrophysical properties, if any, are correlated with radio SED complexity. To do this, we have acquired radio continuum data between 70 MHz and 17 GHz for a sample of 19 southern local ($z \lt 0.04$) SFGs. Of this sample 11 are selected to contain low-frequency ($ \lt $300 MHz) turnovers (LFTOs) in their SEDs and eight are control galaxies with similar global properties. We model the radio SEDs for our sample using a Bayesian framework whereby radio emission (synchrotron and free-free) and absorption or loss processes are included modularly. We find that without the inclusion of higher frequency data ($ \gt $17 GHz) single synchrotron power-law based models are always preferred for our sample; however, additional processes including free-free absorption (FFA) and synchrotron losses are often required to accurately model radio SED complexity in SFGs. The fitted synchrotron spectral indices range from $-0.45$ to $-1.07$ and are strongly anticorrelated with stellar mass suggesting that synchrotron losses are the dominant mechanism acting to steepen the spectral index in larger/more massive nearby SFGs. We find that LFTOs in the radio SED are independent from the inclination of SFGs; however, higher inclination galaxies tend to have steeper fitted spectral indices indicating losses to diffusion of cosmic ray electrons into the galactic halo. Four of five of the merging systems in our SFG sample have elevated specific star formation rates and flatter fitted spectral indices with unconstrained LFTOs. Lastly, we find no significant separation in global properties between SFGs with or without modelled LFTOs. Overall these results suggest that LFTOs are likely caused by a combination of FFA and ionisation losses in individual recent starburst regions with specific orientations and interstellar medium properties that, when averaged over the entire galaxy, do not correlate with global astrophysical properties.
The concept of vortex lock-in for a single circular cylinder in an oscillating flow, induced through acoustic forcing, is revisited. Multiple cylinder diameters are investigated over a Reynolds number range between 500 and 7200. The lock-in behaviour is investigated quantitatively through hot-wire anemometry and planar particle image velocimetry measurements. The results corroborate previous findings describing the frequency range over which vortex lock-in occurs. It is found that the cylinder location in a standing wave (pressure node or velocity node) had a significant influence on the lock-in behaviour. A novel scaling which captures the onset of vortex lock-in is proposed which demonstrates that the Strouhal number is important in predicting the amplitude of the velocity fluctuations required to induce lock-in. Velocity fields also reveal the existence of bimodal vortex shedding during lock-in. This is confirmed using snapshot proper orthogonal decomposition which demonstrates that symmetric and alternate shedding modes are simultaneously present during lock-in and that symmetric shedding is inherent to the near wake region only. Reduced-order reconstruction of the instantaneous velocity fields confirmed that features associated with the forcing frequency control the shear layer roll-up up to $x/d=2.1$ while the influence of the asymmetric mode is simply to skew the trajectory of the vortex pair. Since vortex roll-up and the cylinder wake ends at $x/d=2.1$, the emergence of spectral content at $0.5f_e$ is attributed to a wavelength doubling measured between the vortical structures in the flow field.
The aim of this paper is to characterise the internal structures and ice-flow history of representative valley glaciers in Svalbard and infer from them dynamic changes over centennial timescales. Three polythermal and one cold valley glacier are investigated using field- and laboratory-based techniques and remote sensing. Structures along flow-unit boundaries indicate that ice-flow configuration in three of the glaciers has remained stable spanning the residence time of the ice. Deformation of a flow-unit boundary in the fourth reveals an ice-flow instability, albeit one that has been maintained since its most recent advance. Macro-crystallographic, sedimentological and isotopic analyses indicate that basal ice is elevated to the glacier surface, as shown by entrained sediments and enrichment in heavy isotopes. In narrow zones of enhanced cumulative strain, new ice facies are generated through dynamic recrystallisation. The surface density of longitudinal foliation is shown to represent the relative magnitude of cumulative strain. Geometric similarities between flow-unit boundaries in Svalbard valley glaciers and larger scale longitudinal surface structures in ice sheets suggest that deformation mechanisms are common to both.
In order to study the structure and temperature distribution within high-mass star-forming clumps, we employed the Australia Telescope Compact Array to image the $\mathrm{NH}_3$ (J,K) = (1,1) through (6,6) and the (2,1) inversion transitions, the $\mathrm{H}_2\mathrm{O}$$6_{16}$-$5_{23}$ maser line at 22.23508 GHz, several $\mathrm{CH}_3\mathrm{OH}$ lines and hydrogen and helium recombination lines. In addition, 22- and 24-GHz radio continuum emission was also imaged.
The $\mathrm{NH}_3$ lines probe the optical depth and gas temperature of compact structures within the clumps. The $\mathrm{H}_2\mathrm{O}$ maser pinpoints the location of shocked gas associated with star formation. The recombination lines and the continuum emission trace the ionised gas associated with hot OB stars. The paper describes the data and presents sample images and spectra towards select clumps. The technique for estimating gas temperature from $\mathrm{NH}_3$ line ratios is described. The data show widespread hyperfine intensity anomalies in the $\mathrm{NH}_3$ (1,1) images, an indicator of non-LTE $\mathrm{NH}_3$ excitation. We also identify several new $\mathrm{NH}_3$ (3,3) masers associated with shocked gas. Towards AGAL328.809+00.632, the $\mathrm{H}_2\mathrm{O}$$6_{16}$-$5_{23}$ line, normally seen as a maser, is instead seen as a thermally excited absorption feature against a strong background continuum. The data products are described in detail.
Female patients using indwelling urinary catheters (IUCs) are disproportionately at risk for developing catheter-associated urinary tract infections (CAUTIs) compared to males. Female external urine wicking devices (FEUWDs) have emerged as potential alternatives to IUCs for incontinence management.
Objectives:
To assess the clinical risks and benefits of FEUWDs as alternatives to IUCs.
Methods:
Ovid MEDLINE, Embase, Scopus, Web of Science Core Collection, CINAHL Complete, and ClinicalTrials.gov were searched from inception to July 10, 2023. Included studies used FEUWDs as an intervention and reported measures of urinary tract infections and secondary outcomes related to incontinence management.
Results:
Of 2,580 returned records, 50 were systematically reviewed. Meta-analyses assessed rates of indwelling CAUTIs and IUC utilization. Following FEUWD implementation, IUC utilization rates decreased 14% (RR = 0.86, 95% CI = [0.76, 0.97]) and indwelling CAUTI rates nonsignificantly decreased up to 32% (IRR = 0.68, 95% CI = [0.39, 1.17]). Limited only to studies that described protocols for implementation, the incidence rate of indwelling CAUTIs decreased significantly up to 54% (IRR = 0.46, 95% CI = [0.32, 0.66]). Secondary outcomes were reported less routinely.
Conclusions:
Overall, FEUWDs nonsignificantly reduced indwelling CAUTI rates, though reductions were significant among studies describing FEUWD implementation protocols. We recommend developing standard definitions for consistent reporting of non-indwelling CAUTI complications such as FEUWD-associated UTIs, skin injuries, and mobility-related complications.
The clinic visit is a critical point of contact for family caregivers. However, only 37% of family caregivers are able to accompany patients to visits. When they cannot attend, caregivers receive visit information to assist with their caregiving. However, little is known about how method of receiving information from clinic visits is associated with important caregiver outcomes. This study sought to determine whether mode of receiving clinic visit information (speaking with the patient, attending the visit, or using an after-visit summary [AVS]) was associated with changes in caregiver burden, caregiver preparedness, and the positive aspects of caregiving.
Methods
Cross-sectional web-based survey of a national sample of adult family caregivers. Multiple linear regression models determined associations between communication modes and caregivers’ burden, preparedness, and positive aspects of caregiving, adjusting for sociodemographic covariates.
Results
Respondents (N = 340) were mostly male (58%), White (59%), ranged from 18 to 85 years old, and supported patients with conditions including diabetes, dementia, and cancer. Speaking with patients was associated with increases in positive aspects of caregiving (95% CI = 2.01, 5.42) and an AVS was associated with increases in positive aspects of caregiving (95% CI = 0.4, 3.56) and preparedness for caregiving (95% CI = 0.61, 3.15). Using any method of receiving information from visits was associated with the greatest increase in preparedness, compared to not receiving visit information. We did not observe an association between method of communication and caregiver burden.
Significance of results
Method of communicating visit information is associated with improvements in caregiver preparedness and the positive aspects of caregiving, though caregiver burden may be unaffected by information exchange. Given the limitations of current communication methods, future work should explore directionality of the associations we found and identify visit communication strategies with caregivers that optimize caregiver and patient outcomes.
The crystal structure of ractopamine hydrochloride has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Ractopamine hydrochloride crystallizes in space group Pbca (#61) with a = 38.5871(49), b = 10.7691(3), c = 8.4003(2) Å, V = 3490.75(41) Å3, and Z = 8. The ractopamine cation contains two chiral centers, and the sample consists of a mixture of the S,S/R,R/S,R and R,S forms. Models for the two diastereomers S,S and S,R were refined, and yielded equivalent residuals, but the S,R form is significantly lower in energy. The crystal structure consists of layers of molecules parallel to the bc-plane. In each structure one of the H atoms on the protonated N atom acts as a donor in a strong discrete N–H⋯Cl hydrogen bond. Hydroxyl groups act as donors in O–H⋯Cl and O–H⋯O hydrogen bonds. Both the classical and C–H⋯Cl and C–H⋯O hydrogen bonds differ between the forms, helping to explain the large microstrain observed for the sample. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).
Computational design tools allow the generation of vast numbers of possible designs, entrusting the human designer with describing constraints or specifications to guide exploration of the design space. Designers can have many different decision considerations when conducting this type of exploration, including form, function, users, or context. In this work, we investigate strategies that emerge when people are tasked with exploring a large design space within either a non-immersive (2D) or immersive (VR) interface and equipped with action-based interactions to set or envision specifications related to their considerations. Results from a 28 participant user study uncovers that people have varying strategies to enact their decision considerations that are not unique to the type of interface. However, the interfaces differ in perceptions of enabling breadth or depth of exploration holistically, with preference towards 2D interfaces to compare options, and VR to understand single designs. These results have implications for the user experience of systems that allow designers to explore the outputs of large design spaces, both at the interaction and interface levels.
In this study, we assess charcoal records from eolian deposits within the Cooloola Sand Mass, a subtropical coastal dune system in eastern Australia, to determine whether they can be used as a proxy for Holocene fire history. We excavate four profiles in depositional wedges at the base of dune slipfaces (footslope deposits) and calculate charcoal concentrations for three size classes (180–250 μm, 250–355 μm, and 355 μm–2 mm) at predetermined depth intervals. Age–depth models are constructed for each profile using radiocarbon measurements (n = 46) and basal optically stimulated luminescence ages (n = 4). All records appear intact with little evidence of postdepositional mixing as demonstrated by minimal age reversals and consistent trends in charcoal concentration and accumulation rates (CHAR) among size classes. Combining all four records, we generate a ca. 7 cal ka BP terrestrial fire history that depicts distinct peaks representing periods of increased local fire activity at <0.3, 1.1–0.4, 2.2–1.6, 3.4–2.6, and 6.7–5.3 cal ka BP. Our findings parallel regional records and highlight the utility of dune footslopes as ecological and sedimentary archives. As dune fields are much more common than wetlands and lakes in semiarid and arid areas, these deposits have the potential to increase the spatial resolution of fire records globally.
Current psychiatric diagnoses, although heritable, have not been clearly mapped onto distinct underlying pathogenic processes. The same symptoms often occur in multiple disorders, and a substantial proportion of both genetic and environmental risk factors are shared across disorders. However, the relationship between shared symptoms and shared genetic liability is still poorly understood.
Aims
Well-characterised, cross-disorder samples are needed to investigate this matter, but few currently exist. Our aim is to develop procedures to purposely curate and aggregate genotypic and phenotypic data in psychiatric research.
Method
As part of the Cardiff MRC Mental Health Data Pathfinder initiative, we have curated and harmonised phenotypic and genetic information from 15 studies to create a new data repository, DRAGON-Data. To date, DRAGON-Data includes over 45 000 individuals: adults and children with neurodevelopmental or psychiatric diagnoses, affected probands within collected families and individuals who carry a known neurodevelopmental risk copy number variant.
Results
We have processed the available phenotype information to derive core variables that can be reliably analysed across groups. In addition, all data-sets with genotype information have undergone rigorous quality control, imputation, copy number variant calling and polygenic score generation.
Conclusions
DRAGON-Data combines genetic and non-genetic information, and is available as a resource for research across traditional psychiatric diagnostic categories. Algorithms and pipelines used for data harmonisation are currently publicly available for the scientific community, and an appropriate data-sharing protocol will be developed as part of ongoing projects (DATAMIND) in partnership with Health Data Research UK.
A new look at how reading was practised and represented in England from the seventh century to the beginnings of the print era, finding many kinships between reading cultures across the medieval longue durée.