The effects of surface roughness in the transitionally rough regime on the overlying near-wall turbulence are modelled using quasi-linear approximations proposed recently: minimal quasi-linear approximation (MQLA) (Hwang & Ekchardt, 2020, J. Fluid Mech., vol. 894, A23), data-driven quasi-linear approximation (DQLA) (Holford et al., 2024, J. Fluid Mech., vol. 980, A12) and a newly established variant of MQLA (M2QLA, minimal two-mode quasi-linear approximation). The transpiration-resistance model (TRM) for boundary conditions is applied to account for the surface roughness (Lācis et al., 2020, J. Fluid Mech., vol. 884, A21). It is shown that many essential near-wall turbulence statistics are fairly well captured by the quasi-linear approximations in a wide range of slip and transpiration lengths for the TRM boundary conditions. In particular, the virtual origins and the resulting roughness functions are well predicted, showing good agreement with those from previous direct numerical simulations (DNS) in mild roughness cases. The DQLA and M2QLA, which incorporate streamwise-dependent Fourier modes in the approximations, are also shown to perform a little better than MQLA, especially with DQLA reproducing the two-dimensional energy spectra qualitatively consistent with the DNS. Finally, with a computational cost much lower than DNS, it is shown that the proposed quasi-linear approximation frameworks offer an efficient tool to rapidly explore the roughness effects within a large parameter space.