We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A rotating detonation combustor exhibits corotating $N$-wave modes with $N$ detonation waves propagating in the same direction. These modes and their responses to ignition conditions and disturbances were studied using a surrogate model. Through numerical continuation, a mode curve (MC) is obtained, depicting the relationship between the wave speed of the one-wave mode and a defined baseline of the combustor circumference ($L_{{base}}$) under fixed equation parameters, limited by deflagration and flow choking. The modes’ existence is confirmed by the equivalence between a one-wave mode within a combustor with circumference $L_{{base}}$/$N$ on the MC and an $N$-wave mode in an $L_{{base}}$ combustor. The stability, measured by the real part of the eigenvalue from linear stability analysis (LSA), revealed the dynamic properties. When multiple stable modes exist under the same parameters, ignition conditions with a spatial period of $L_{{base}}$/$N$ are more likely to form $N$-wave modes. An unstable evolution in formed modes, occurs in the dynamics from stable to unstable modes through saddle-node bifurcation and Hopf bifurcation induced by parameter perturbations and from unstable to stable modes induced by state disturbances. Eigenmodes from LSA reveal mechanisms of the unstable evolution, including the effect of secondary deflagration in the unstable one-wave mode and competitive interaction between detonation waves in the unstable multiwave mode, crucial for the combustor to mode transition.
For each $n\geq 1$, let $FT_n$ be the free tree monoid of rank n and $E_n$ the full extensive transformation monoid over the finite chain $\{1, 2, \ldots , n\}$. It is shown that the monoids $FT_n$ and $E_{n+1}$ satisfy the same identities. Therefore, $FT_n$ is finitely based if and only if $n\leq 3$.
Adolescence is a pivotal stage for brain development and a critical window for the emergence and transition of self-injury thoughts and behaviours (SITBs). However, the genetic and neurobiological mechanisms underlying SITBs transition during this developmental period are poorly understood.
Aims
This study investigates associations among genetic predispositions, brain abnormalities and SITBs transition during adolescence, and identifies potential neurobiological and clinical mediators of genetic effects.
Method
This national retrospective cohort study analysed 5-year longitudinal data from the Adolescent Brain and Cognitive DevelopmentSM Study® (N = 11 868 children aged 9–10 years at baseline). Logistic regression models identified genetic susceptibility and neurobiological abnormalities associated with SITBs transition over a 4-year period. Generalised additive models characterised genetic risk trajectories and critical developmental periods. Mediation analyses examined neurobiological and clinical pathways linking genetic susceptibility to SITBs.
Results
Our findings highlight a notable correlation between SITBs transition and genetic susceptibility, including polygenic risk scores for suicide attempt, ever contemplated self-harm and ever self-harm. The analysis indicates that ages 10–15 years may be a critical period during which genetic risk exerts its most pronounced influence. Structural and functional brain imaging detected some alterations, particularly in grey matter volume (GMV) of the left ventral posterior cingulate cortex, alongside disrupted resting-state functional connectivity in the dorsal attention and default mode networks. Mediation analysis suggests that the association between genetic susceptibility and SITBs transition over 4 years may be partially mediated by GMV changes in the left inferior frontal sulcus, altered resting-state connectivity between the auditory and sensorimotor hand networks and the p-factor.
Conclusions
These results may offer insights into integrating genetic, neurobiological and clinical data to enhance the accuracy of suicide risk stratification in adolescents, and inform the development of more nuanced and targeted early intervention strategies.
Let $\mu _{M,D}$ be the self-similar measure generated by $M=RN^q$ and the product-form digit set $D=\{0,1,\ldots ,N-1\}\oplus N^{p_1}\{0,1,\ldots ,N-1\}\oplus \cdots \oplus N^{p_s}\{0,1,\ldots ,N-1\}$, where $R\geq 2$, $N\geq 2$, q, $p_i(1\leq i\leq s)$ are integers with $\gcd (R,N)=1$ and $1\leq p_1<p_2<\cdots <p_s<q$. In this paper, we first show that $\mu _{M,D}$ is a spectral measure with a model spectrum $\Lambda $. Then, we completely settle two types of spectral eigenvalue problems for $\mu _{M,D}$. In the first case, for a real t, we give a necessary and sufficient condition under which $t\Lambda $ is also a spectrum of $\mu _{M,D}$. In the second case, we characterize all possible real numbers t such that $\Lambda '\subset \mathbb {R}$ and $t\Lambda '$ are both spectra of $\mu _{M,D}$.
Limited longitudinal research examining developmental changes in visuospatial working memory (WM) among children and adolescents with autism spectrum disorder (ASD) has prompted our investigation.
Methods
We assessed 123 autistic children and adolescents and 145 typically developing controls (TDC) using the Cambridge Neuropsychological Test Automated Battery at baseline (Time 1 [mean age ± SD]: ASD: 13.04 ± 2.86; TDC: 11.53 ± 2.81) and 2–9 years later (Time 2: ASD: 18.08 ± 3.17; TDC: 16.41 ± 3.09) to measure changes of visuospatial (working) memory over time. The linear mixed model was used to compare the differences between ASD and TDC and estimate the effect of changes over time, age, ASD diagnosis, and interactions of Time×Age×ASD. The overall Age×ASD effect was calculated in the spline regression.
Results
Autistic children and adolescents exhibited significantly poorer performance on all spatial tasks and some visual tasks than their TDC counterparts at Time 1 and Time 2, after adjusting for sex, age, attention deficit/hyperactivity disorder (ADHD), and full-scale intelligence quotient. There was an overall improvement from Time 1 to Time 2 across all tasks with significant Age×Time interactions. Significant Age×ASD interactions were observed in the delayed matching to sample, pattern recognition memory (PRM), spatial span (SSP), and spatial working memory (SWM) tasks with no significant Time×ASD interactions. In the quadratic nonlinear model, Age×ASD interactions were significant in PRM and SSP.
Conclusion
Despite significant improvements during the follow-up period, autistic children and adolescents continue to experience persistent deficits in SWM, with a weaker age-related improvement in visuospatial WM than TDC.
To investigate the association of dietary patterns (DPs) with prediabetes and Type 2 Diabetes among Tibetan adults, first to identify DPs associated with abdominal obesity and examine their relationships with prediabetes and type 2 diabetes. Additionally, the study aims to investigate the mediating effects of body fat distribution and altitude on the associations between these DPs and the prevalence of prediabetes and Type 2 Diabetes.
Design:
An open cohort among Tibetans.
Setting:
Community-based.
Participants:
The survey recruited 1003 participants registered for health check-ups from November to December 2018, and 1611 participants from December 2021 to May 2022. During the baseline and follow-up data collection, 1818 individuals participated in at least one of the two surveys, with 515 of them participating in both.
Results:
Two DPs were identified by reduced rank regression (RRR). DP1 had high consumption of beef and mutton, non-caloric drink, offal, and low intake in tubers and roots, salty snacks, onion and spring onion, fresh fruits, desserts and nuts and seeds; DP2 had high intake of whole grains, Tibetan cheese, light-colored vegetables and pork and low of sugar-sweetened beverages, whole-fat dairy and poultry. Individuals in the highest tertile of DP1 showed higher risks of prediabetes (OR 95% CI) 1.35 (1.05, 1.73) and T2D 1.36 (1.05, 1.76). In the highest tertile of DP2 exhibited an elevated risk of T2D 1.63 (1.11, 2.40) in fully adjustment.
Conclusion:
Abdominal adiposity-related DPs are positively associated with T2D. Promoting healthy eating should be considered to prevent T2D among Tibetan adults.
Megacities around the world are increasingly confronted with conservation and restoration bottlenecks due to the competing demands of urban expansion and environmental conservation. This study investigates conservation prioritization strategies for balancing biodiversity protection, ecosystem service (ES) supply and landscape connectivity in rapidly urbanizing Beijing. By employing spatially explicit modelling and prioritization scenario techniques, we identify spatially heterogeneous priority zones. We demonstrate that high-value areas for ES supply, particularly carbon storage and water regulation, concentrate primarily in Beijing’s north-western mountainous regions, covering c. 62% of the city’s area. Conversely, critical habitats for threatened species and key connectivity corridors are dispersed, with 22.89% of critical habitats located within urban built-up areas. Gap analysis reveals limited alignment between Beijing’s current ecological security patterns, with only 9.6% coverage of the identified top 10% conservation priority zones, especially within the metropolitan core. The study underscores significant trade-offs among different ecological objectives and multi-criteria conservation strategies. We propose an optimized conservation framework based on zonation analysis to guide targeted landscape planning decisions. This approach provides actionable insights for urban policymakers to achieve comprehensive sustainability, emphasizing the importance of protecting critical ecological areas in both urban and rural landscapes amid ongoing urban expansion.
Tuberculosis (TB) remains a significant public health concern in China. Using data from the Global Burden of Disease (GBD) study 2021, we analyzed trends in age-standardized incidence rate (ASIR), prevalence rate (ASPR), mortality rate (ASMR), and disability-adjusted life years (DALYs) for TB from 1990 to 2021. Over this period, HIV-negative TB showed a marked decline in ASIR (AAPC = −2.34%, 95% CI: −2.39, −2.28) and ASMR (AAPC = −0.56%, 95% CI: −0.62, −0.59). Specifically, drug-susceptible TB (DS-TB) showed reductions in both ASIR and ASMR, while multidrug-resistant TB (MDR-TB) showed slight decreases. Conversely, extensively drug-resistant TB (XDR-TB) exhibited upward trends in both ASIR and ASMR. TB co-infected with HIV (HIV-DS-TB, HIV-MDR-TB, HIV-XDR-TB) showed increasing trends in recent years. The analysis also found an inverse correlation between ASIRs and ASMRs for HIV-negative TB and the Socio-Demographic Index (SDI). Projections from 2022 to 2035 suggest continued increases in ASIR and ASMR for XDR-TB, HIV-DS-TB, HIV-MDR-TB, and HIV-XDR-TB. The rising burden of XDR-TB and HIV-TB co-infections presents ongoing challenges for TB control in China. Targeted prevention and control strategies are urgently needed to mitigate this burden and further reduce TB-related morbidity and mortality.
We construct a novel family of difference-permutation operators and prove that they are diagonalized by the wreath Macdonald P-polynomials; the eigenvalues are written in terms of elementary symmetric polynomials of arbitrary degree. Our operators arise from integral formulas for the action of the horizontal Heisenberg subalgebra in the vertex representation of the corresponding quantum toroidal algebra.
CD33 has been implicated in the pathogenesis of Alzheimer’s disease primarily through its role in inhibiting the clearance of beta-amyloid (Aβ). However, genetic studies yield mixed results and it is unclear whether the impact of CD33 is specific to Alzheimer’s disease or related to broader neurodegenerative processes. Interestingly, CD33 has also been shown to interact with the hepatitis B (HBV) and C viruses (HCV).
Aims
This study aims to investigate the effects of CD33 single-nucleotide polymorphisms (SNPs) on cognitive functions across diverse populations, including healthy controls, individuals with chronic HBV or HCV and those diagnosed with Parkinson’s disease.
Method
We genotyped CD33 SNPs in 563 participants using the Affymetrix platform. Participants’ cognitive functions were cross-sectionally assessed using a neuropsychological test battery spanning six domains.
Results
Our analysis revealed that CD33 SNP variations had no significant cognitive impact on healthy individuals or Parkinson’s disease patients. However, chronic HBV and HCV patients exhibited significant cognitive differences, particularly in memory, related to CD33 SNP genotypes. Moderation analysis indicated a heightened influence of CD33 SNPs on cognitive functions in chronic HBV and HCV individuals. Our data also suggest that inflammation severity may modulate the cognitive effects in hepatitis patients with specific CD33 SNPs.
Conclusions
This study highlights the importance of CD33 SNPs in cognitive outcomes, emphasising their role in the context of chronic viral hepatitis. It contributes to understanding the cognitive profiles influenced by CD33 SNPs and posits CD33’s potential contribution to neurodegenerative disease progression, potentially intensified by HBV/HCV-induced inflammation.
Existing panel studies on the relationships between cognition and depressive symptoms did not systematically separate between- and within-person components, with measurement time lags that are too long for precise assessment of dynamic within-person relationships.
Aims
To investigate the bidirectional relationships between cognition and depressive symptoms and examine the effects of sociodemographic characteristics and lifestyle factors via random-intercept, cross-lagged panel modelling (RI-CLPM) in middle-aged and older adults.
Method
The sample comprised 24 425 community-based residents aged 45 years or above, recruited via five waves of the China Health and Retirement Longitudinal Study (2011–2020). Cognition was evaluated using the Telephone Interview of Cognition Status, and depressive symptoms were assessed by the ten-item Center for Epidemiologic Studies Depression Scale. RI-CLPM included sociodemographic and lifestyle factors as time-invariant and -varying covariates. Subgroup analysis was conducted across gender, age groups and urban/rural regions.
Results
RI-CLPM showed a superior fit to cross-lagged panel models. Male, higher education, married, urban region, non-smoking, currently working and participation in social activities were linked with better cognition and fewer depressive symptoms. Overall, cognition and depressive symptoms showed significant and negative bidirectional cross-lagged effects over time. Despite similar cross-lagged effects across gender, subgroup analysis across urbanicity found that cross-lagged effects were not significant in urban regions.
Conclusions
The present study provided nuanced results on negative bidirectional relationships between cognition and depressive symptoms in Chinese middle-aged and older adults. Our results highlight the health disparities in cognitive and emotional health across urbanicity and age groups.
Women remain underrepresented in National Institutes of Health (NIH) study sections, panels of scientists who review grant applications to inform national research priorities and funding allocations. This longitudinal, retrospective study examined the representation of women on study sections before and during the COVID-19 pandemic. Overall, 16,902 reviewers served on 1,045 study sections across 2019, 2020, and 2021, of which 40.1% (n = 6,786) were women. The likelihood of reviewers being women significantly increased from 2019 to 2021, except among chairpersons. Understanding the representation of scientists influencing NIH grant decisions is important to ensuring scientific discovery that meets the nation’s pluralistic needs.
The extracellular matrices, such as the haemolymph, in insects are at the centre of most physiological processes and are protected from oxidative stress by the extracellular antioxidant enzymes. In this study, we identified two secreted superoxide dismutase genes (PxSOD3 and PxSOD5) and investigated the oxidative stress induced by chlorpyrifos (CPF) in the aquatic insect Protohermes xanthodes (Megaloptera: Corydalidae). PxSOD3 and PxSOD5 contain the signal peptides at the N-terminus. Structure analysis revealed that PxSOD3 and PxSOD5 contain the conserved CuZn-SOD domain, which is mainly composed of β-sheets and has conserved copper and zinc binding sites. Both PxSOD3 and PxSOD5 are predicted to be soluble proteins located in the extracellular space. After exposure to different concentrations of sublethal CPF, MDA content in P. xanthodes larvae were increased in a dose-dependent manner; SOD and CAT activities were also higher in CPF-treated groups than that in the no CPF control, indicating that sublethal CPF induces oxidative stress in P. xanthodes larvae. Furthermore, PxSOD3 and PxSOD5 expression levels and haemolymph SOD activity in the larvae were downregulated by sublethal CPF at different concentrations. Our results suggest that the PxSOD3 and PxSOD5 are putative extracellular antioxidant enzymes that may play a role in maintaining the oxidative balance in the extracellular space. Sublethal CPF may induce oxidative stress in the extracellular space of P. xanthodes by reducing the gene expression and catalytic activity of extracellular SODs.
This study was designed to explore changes in soil bulk density (BD), soil organic carbon (SOC) content, SOC stocks, and soil labile organic carbon (C) fractions after 5 years of soil tillage management under the double-cropping rice system in southern of China. The experiment included four soil tillage treatments: rotary tillage with all crop residues removed as a control (RTO); conventional tillage with crop residues incorporation (CT); rotary tillage with crop residues incorporation (RT); and no-tillage with crop residues retention. Our results revealed that soil tillage combined with crop residue incorporation (CT and RT) significantly decreased BD at 0–20 cm soil layer compared to RTO treatment. SOC content and stocks were increased with the application of crop residues. Compared with RTO treatment, SOC content and stocks were increased by 16.8% and 9.8% in CT treatment, respectively. Soil non-labile C content and proportion of labile C were increased due to crop residue incorporation. Compared with RTO treatment, soil proportion of C mineralisation (Cmin), permanganate oxidisable C (KMnO4), particulate organic C (POC), and microbial biomass C (MBC) was increased by 196.1%, 41.4%, 31.4%, and 17.1% under CT treatment, respectively. These results were confirmed by the carbon management index, which was significantly increased under soil tillage with crop residue incorporation. Here, we demonstrated that soil tillage and crop residue incorporation can increase the pool of stable C at surface soil layer while increasing labile C content and proportion. In conclusion, conventional or rotary tillage combined with crop residue incorporation is a soil management able to improve nutrient cycling and soil quality in paddy fields in southern China.
In this article, we take the charitable activities of the Shaolin Temple as a case study for our analysis of the Chinese Communist Party’s (CCP) management of religion under Xi Jinping. Our fieldwork and in-depth interviews reveal that the Shaolin Temple has, through its charitable work, assumed the attributes of a “cultural broker” for the CCP. And because the temple has an abundance of symbolic capital and is respected by the public, it presents the CCP with a “dictator’s dilemma.” On the one hand, the CCP allocated resources to the temple’s orphanage so that it could assist the regime with its poverty alleviation efforts; on the other hand, there is a danger that the temple may gain sufficient ideological and discursive power to threaten the CCP’s rule. So, for political security reasons, the Party bureaucracy endeavours to maintain tight control over the orphanage.
Multi-loop coupling mechanisms (MCMs) are extensively utilized in the aerospace and aviation industries. This paper analyzes the mobility, singularity, and optimal actuation selection of a 3RR-3RRR MCM on the basis of geometric algebra (GA), where R denotes revolute joint. First, the principle of the shortest path is employed to identify the basic limbs and ascertain the type of coupling limbs. The analytical expression for the twist space and mobility characteristics of the mechanism is obtained by calculating the intersection of the limb’s twist space. The blade of limb constraint is subsequently employed to construct the singular polynomials of the mechanism. The singular configurations of the 3RR-3RRR MCM are analyzed in accordance with the properties of the outer product, resulting in the identification of two distinct types of boundary singularities. Next, the local transmission index is employed to evaluate the motion/force transmission performance of the two actuation schemes and finalize the selection of the superior actuation scheme for the mechanism. Finally, a prototype is developed to evaluate the energy loss resulting from the two actuation schemes, which verifies the correctness of the actuation selection scheme.