We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Aircraft tyres play a critical role in ensuring the safety of aircraft landings. This paper introduces a novel multi-scale analytical method for evaluating tyre impact performance, explicitly studying the effect of damage defects in the manufacturing and service process on tyre landing dynamic performance. Building on this approach, a numerical simulation of aircraft tyre static and impact load scenarios was conducted, followed by experimental validation. The study systematically compares and analyses the effects of void volume fraction, cord volume fraction and material scale factor on the maximum impact force experienced by aircraft tyre. The variations in maximum impact force arising from changes in tyre structural strength, and deformation can be explained by specific parameters. The findings of this research have significant implications for tyre design and engineering, as well as for enhancing the understanding of the factors that influence tyre performance and safety.
The Hele-Shaw–Cahn–Hilliard model, coupled with phase separation, is numerically simulated to demonstrate the formation of anomalous fingering patterns in a radial displacement of a partially miscible binary-fluid system. The composition of injected fluid is set to be less viscous than the displaced fluid and within the spinodal or metastable phase-separated region, in which the second derivative of the free energy is negative or positive, respectively. Because of phase separation, concentration evolves non-monotonically between the injected and displaced fluids. The simulations reveal four areas of the concentration distribution between the fluids: the inner core; the low-concentration grooves/high-concentration ridges; the isolated fluid fragments or droplets; the mixing zone. The grooves/ridges and the fragments/droplets, which are the unique features of phase separation, form in the spinodal and metastable regions. Four typical types of patterns are categorized: core separation (CS); fingering separation (FS); separation fingering (SF); lollipop fingering, in the order of the dominance of phase separation, respectively. For the patterns of CS and FS, isolated fluid fragments or droplets around the inner core are the main features. Fingering formation is better maintained with droplets in the SF pattern if the phase separation is relatively weaker than viscous fingering (VF). Even continuous fingers are well preserved in the case of dominant VF; phase separation results in lollipop-shaped fingers. The evolving trend of the patterns is in line with the experiments. These patterns are summarized in a pattern diagram, mainly by the magnitude of the second derivative of the free energy profile.
Adolescence is a period marked by highest vulnerability to the onset of depression, with profound implications for adult health. Neuroimaging studies have revealed considerable atrophy in brain structure in these patients with depression. Of particular importance are regions responsible for cognitive control, reward, and self-referential processing. However, the causal structural networks underpinning brain region atrophies in adolescents with depression remain unclear.
Objectives
This study aimed to investigate the temporal course and causal relationships of gray matter atrophy within the brains of adolescents with depression.
Methods
We analyzed T1-weighted structural images using voxel-based morphometry in first-episode adolescent patients with depression (n=80, 22 males; age = 15.57±1.78) and age, gender matched healthy controls (n=82, 25 males; age = 16.11±2.76) to identify the disease stage-specific gray matter abnormalities. Then, with granger causality analysis, we arranged the patients’ illness duration chronologically to construct the causal structural covariance networks that investigated the causal relationships of those atypical structures.
Results
Compared to controls, smaller volumes in ventral medial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), middle cingulate cortex (MCC) and insula areas were identified in patients with less than 1 year illness duration, and further progressed to the subgenual ACC, regions of default, frontoparietal networks in longer duration. Causal network results revealed that dACC, vmPFC, MCC and insula were prominent nodes projecting exerted positive causal effects to regions of the default mode and frontoparietal networks. The dACC, vmPFC and insula also had positive projections to the reward network, which included mainly the thalamus, caudate and putamen, while MCC also exerted a positive causal effect on the insula and thalamus.
Conclusions
These findings revealed the progression of structural atrophy in adolescent patients with depression and demonstrated the causal relationships between regions involving cognitive control, reward and self-referential processes.
In recent years, mock theta functions in the modern sense have received great attention to seek examples of q-hypergeometric series and find their alternative representations. In this paper, we discover some new mock theta functions and express them in terms of Hecke-type double sums based on some basic hypergeometric series identities given by Z.G. Liu.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
Colliding collisionless shocks appear in a great variety of astrophysical phenomena and are thought to be possible sources of particle acceleration in the Universe. We have previously investigated particle acceleration induced by single super-critical shocks (whose magnetosonic Mach number is higher than the critical value of 2.7) (Yao et al., Nat. Phys., vol. 17, issue 10, 2021, pp. 1177–1182; Yao et al., Matter Radiat. Extrem., vol. 7, issue 1, 2022, 014402), as well as the collision of two sub-critical shocks (Fazzini et al., Astron. Astrophys., vol. 665, 2022, A87). Here, we propose to make measurements of accelerated particles from interpenetrating super-critical shocks to observe the ‘phase-locking effect’ (Fazzini et al., Astron. Astrophys., vol. 665, 2022, A87) from such an event. This effect is predicted to significantly boost the energy spectrum of the energized ions compared with a single super-critical collisionless shock. We thus anticipate that the results obtained in the proposed experiment could have a significant impact on our understanding of one type of primary source (acceleration of thermal ions as opposed to secondary acceleration mechanisms of already energetic ions) of ion energization of particles in the Universe.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
In automotive digital development, 3D prototype creation is a team effort of designers and engineers, each contributing with ideas and technical evaluations through means of computer simulations. To support the team in the 3D design ideation and exploration task, we propose an interactive design system for assisted design explorations and faster performance estimations. We utilize the advantage of deep learning-based autoencoders to create a low-dimensional latent manifold of 3D designs, which is utilized within an interactive user interface to guide and strengthen the decision-making process.
This study aimed to investigate the association of nasal nitric oxide and olfactory function.
Method
A cross-sectional study was performed in 117 adults, including 91 patients with chronic rhinosinusitis and 26 healthy controls. Scores on the 22-item Sino-Nasal Outcomes Test, Lund-Mackay scale and Lund-Kennedy scale were recorded to assess severity of disease. All participants were screened for common inhaled and food allergens. Nasal nitric oxide and fractional exhaled nitric oxide testing, acoustic rhinometry and anterior rhinomanometry testing were performed to measure nasal function. The validated Sniffin’ Sticks test battery was used to assess olfactory function.
Results
Higher nasal nitric oxide was an independent protective factor for odour discrimination and odour threshold in participants with chronic rhinosinusitis after adjusting for age, gender, drinking, smoking, 22-item Sino-Nasal Outcomes Test, Lund-Mackay score, Lund-Kennedy score, immunoglobulin E and the second minimal cross-sectional area by acoustic rhinometry. Nasal nitric oxide also showed high discrimination in predicting impaired odour discrimination. In addition, nasal nitric oxide was lower in older participants, those with higher Lund-Mackay or Lund-Kennedy scores and higher with elevated total serum immunoglobulin E concentrations above a threshold of 0.35 kU/l.
Conclusion
Higher nasal nitric oxide is associated with better odour discrimination in chronic rhinosinusitis and is modulated by age, degree of allergy and severity of chronic rhinosinusitis.
We previously described an efficient, lightweight and flexible electro-thermal system, based on directly drawn carbon nanotube web (CNT web), as part of an icing protection system for carbon fibre reinforced polymer (CFRP) composite aircraft structures. The location of the heating elements on critical lifting surface leading edges or nacelle intake lips makes them particularly susceptible to impact damage, which may leave no visible mark. This makes it desirable to have both a mechanism for identifying the location of damage to the CNT structure (and by inference, potential damage to the underlying CFRP) and a process for restoring the CNT heater to full operation. With the CNT web acting as a sensor, impact damage is identified by an increase in electrical resistance and, particularly, by infrared imaging, which reveals a cold spot or zone depending upon the CNT web layup. Whereas a unidirectional CNT web layup exhibits a large increase in resistance and loss of a full width band of operation, a cross ply quasi-isotropic CNT web arrangement suffers only a small increase in resistance and a loss of function that is highly localised to the damaged area. A novel methodology, based on dispersed CNT in resin, is described for repairing and reconnecting the CNT structure and restoring functionality. A CNT web-based electro-thermal element was applied to the leading edge of a representative carbon-fibre composite wing section to demonstrate the flexibility of this system.
The aim of this study was to explore the frequency and distribution of gene mutations that are related to isoniazid (INH) and rifampin (RIF)-resistance in the strains of the multidrug-resistant tuberculosis (MDR-TB) Mycobacterium tuberculosis (M.tb) in Beijing, China. In this retrospective study, the genotypes of 173 MDR-TB strains were analysed by spoligotyping. The katG, inhA genes and the promoter region of inhA, in which genetic mutations confer INH resistance; and the rpoB gene, in which genetic mutations confer RIF resistance, were sequenced. The percentage of resistance-associated nucleotide alterations among the strains of different genotypes was also analysed. In total, 90.8% (157/173) of the MDR strains belonged to the Beijing genotype. Population characteristics were not significantly different among the strains of different genotypes. In total, 50.3% (87/173) strains had mutations at codon S315T of katG; 16.8% (29/173) of strains had mutations in the inhA promoter region; of them, 5.5% (15/173) had point mutations at −15 base (C→T) of the inhA promoter region. In total, 86.7% (150/173) strains had mutations at rpoB gene; of them, 40% (69/173) strains had mutations at codon S531L of rpoB. The frequency of mutations was not significantly higher in Beijing genotypic MDR strains than in non-Beijing genotypes. Beijing genotypic MDR-TB strains were spreading in Beijing and present a major challenge to TB control in this region. A high prevalence of katG Ser315Thr, inhA promoter region (−15C→T) and rpoB (S531L) mutations was observed. Molecular diagnostics based on gene mutations was a useful method for rapid detection of MDR-TB in Beijing, China.
Recently, a triple-network model suggested the abnormal interactions between the executive-control network (ECN), default-mode network (DMN) and salience network (SN) are important characteristics of addiction, in which the SN plays a critical role in allocating attentional resources toward the ECN and DMN. Although increasing studies have reported dysfunctions in these brain networks in Internet gaming disorder (IGD), interactions between these networks, particularly in the context of the triple-network model, have not been investigated in IGD. Thus, we aimed to assess alterations in the inter-network interactions of these large-scale networks in IGD, and to associate the alterations with IGD-related behaviors.
Methods:
DMN, ECN and SN were identified using group-level independent component analysis (gICA) in 39 individuals with IGD and 34 age and gender matched healthy controls (HCs). Then alterations in the SN-ECN and SN-DMN connectivity, as well as in the modulation of ECN versus DMN by SN, using a resource allocation index (RAI) developed and validated previously in nicotine addiction, were assessed. Further, associations between these altered network coupling and clinical assessments were also examined.
Results:
Compared with HCs, IGD had significantly increased SN-DMN connectivity and decreased RAI in right hemisphere (rRAI), and the rRAI in IGD was negatively associated with their scores of craving.
Conclusions:
These findings suggest that the deficient modulation of ECN versus DMN by SN might provide a mechanistic framework to better understand the neural basis of IGD and might provide novel evidence for the triple-network model in IGD.
A novel approach to identify internal interfacial layers, or IILs, in wall-bounded turbulent flows is proposed. Using a fuzzy cluster method (FCM) on the streamwise velocity component, a unique and unambiguous grouping of the uniform momentum zones (UMZs) is achieved, thus allowing the identification of the IILs. The approach overcomes some of the key limitations of the histogram-based IIL identification methods. The method is insensitive to the streamwise domain length, can be used on inhomogeneous grids, uses all the available flow field data, is trivially extended to three dimensions and does not need user-defined parameters (e.g. number of bins) other than the number of zones. The number of zones for a given snapshot can be automatically determined by an a priori algorithm based on a kernel density estimation algorithm, or KDE. This automated approach is applied to compute the average number of UMZs as a function of Reynolds number $Re_{\unicode[STIX]{x1D70F}}$ in turbulent channel flows in several numerical simulations. This systematic approach reveals a dependence of the Reynolds number on the average number of UMZs in the channel flow; this supports previously reported observations in the boundary layer. The fuzzy clustering approach is applied to the turbulent boundary layer (experimental, planar particle image velocimetry) and channel flow (numerical, direct numerical simulation) at varying Reynolds numbers. The interfacial layers are characterized by a strong concentration of spanwise vorticity, with the outer-most layer located at the upper edge of the log layer. The three-dimensional interface identification reveals a streak-like organization. The large-scale motion (LSM) at the outer region of the channel flow boundary layer modulates the outer IIL. The corrugations of the outer IIL are aligned with the LSM and the conditional correlation of the inner and outer IIL height shows that extreme near-wall events leave their mark on the outer IIL corrugations.
In 2010, Hei-Chi Chan introduced the cubic partition function a(n) in connection with Ramanujan's cubic continued fraction. Chen and Lin, and Ahmed, Baruah and Dastidar proved that a(25n + 22) ≡ 0 (mod 5) for n ⩾ 0. In this paper, we prove several infinite families of congruences modulo 5 and 7 for a(n). Our results generalize the congruence a(25n + 22) ≡ 0 (mod 5) and four congruences modulo 7 for a(n) due to Chen and Lin. Moreover, we present some non-standard congruences modulo 5 for a(n) by using an identity of Newman. For example, we prove that $a((({15\times 17^{3\alpha }+1})/{8})) \equiv 3^{\alpha +1} \ ({\rm mod}\ 5)$ for α ⩾ 0.
Starch digestion in the small intestines of the dairy cow is low, to a large extent, due to a shortage of syntheses of α-amylase. One strategy to improve the situation is to enhance the synthesis of α-amylase. The mammalian target of rapamycin (mTOR) signalling pathway, which acts as a central regulator of protein synthesis, can be activated by leucine. Our objectives were to investigate the effects of leucine on the mTOR signalling pathway and to define the associations between these signalling activities and the synthesis of pancreatic enzymes using an in vitro model of cultured Holstein dairy calf pancreatic tissue. The pancreatic tissue was incubated in culture medium containing l-leucine for 3 h, and samples were collected hourly, with the control being included but not containing l-leucine. The leucine supplementation increased α-amylase and trypsin activities and the messenger RNA expression of their coding genes (P <0.05), and it enhanced the mTOR synthesis and the phosphorylation of mTOR, ribosomal protein S6 kinase 1 and eukaryotic initiation factor 4E-binding protein 1 (P <0.05). In addition, rapamycin inhibited the mTOR signal pathway factors during leucine treatment. In sum, the leucine regulates α-amylase and trypsin synthesis in dairy calves through the regulation of the mTOR signal pathways.
This cross-sectional study aimed to examine and compare prevalence and correlates of whole blood Epstein–Barr virus (EBV) DNA between HIV-positive and HIV-negative men who have sex with men (MSM). Five hundred and four HIV-positive MSM and 504 age-matched HIV-negative MSM were recruited from an HIV counseling and testing clinic in Shanghai, China from November 2014 to November 2015 and were administered with a face-to-face questionnaire interview. Whole blood EBV DNA was tested by nested polymerase chain reaction assays on EBNA-1, EBNA-2, and LMP-1 genes. The prevalence of whole blood EBV DNA was 56·0% (95% CI 51·7–60·3%) among HIV-positive MSM and 26·0% (95% CI 22·4–30·0%) among HIV-negative MSM. Whole blood EBV DNA positivity was significantly associated with HIV infection (adjusted odds ratio (aOR) 3·43, 95% CI 2·58–4·57) and frequent intake of pickled, smoked, or salty food (aOR 1·71, 95% CI 1·02–2·86) in the whole sample, and with <200 cells/μl CD4 cell counts (aOR 1·79, 95% CI 1·05–3·05) and pickled, smoked, or salty food intake (aOR 3·14, 95% CI 1·39–7·08) in HIV-positive group. HIV-infected MSM are at higher risk of active EBV replication than HIV-uninfected MSM, underscoring needs of surveillance and research on EBV-related carcinogenesis in this population.
Pig farmers and veterinarians have high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) due to the occupational livestock exposure, while few reported this association on slaughterhouse workers. We conducted this cross-sectional study to explore the phenotypic and molecular characteristics of S. aureus and MRSA in slaughterhouse pig-related workers and control workers in Guangdong Province, China. Participants were interviewed and provided two nasal swabs. Swabs were tested for S. aureus, and isolates were further tested for antimicrobial susceptibility, virulence genes and multi-locus sequence typing. Compared with control workers, pig-related workers have significantly higher prevalence of MRSA carriage (adjusted odd ratio (aOR) 3·70, 95% CI 1·63–8·40). The proportions of MRSA resistant to clindamycin, erythromycin, tetracycline or chloromycetin were significantly higher in pig-related workers than in control workers. The predominant phenotypes of S. aureus were resistant to penicillin, clindamycin, erythromycin and tetracycline. Three MRSA CC9 isolates with livestock-associated characteristics (resistance to tetracycline and absence of immune evasion cluster (IEC) genes) were detected in pig-related workers but not in control workers. For human-associated CCs (CC7, CC59, CC6, and CC188), there was no significant difference in IEC profile or antimicrobial resistance between the groups. These findings reveal that there may be a potential risk for livestock-to-human transmission of LA-MRSA and human-to-human transmission of human-associated MRSA.
The first ice-core record of both the Holocene and Wisconsin/Würm Late Glacial Stage (LGS) from the subtropics has been extracted from three ice cores to bedrock from the Dunde ice cap on the north-central Qinghai-Tibetan Plateau. Ice thicknesses at the ice-cap summit average 138 m, the bedrock surface is relatively flat, surface and basal temperatures are −7.3 and −4.7°C, respectively and the ice cap exhibits radial flow away from the summit dome. These records reveal a major change in the climate of the plateau ∼10 000 years ago and suggest that LGS conditions were colder, wetter and dustier than Holocene conditions. This is inferred from the more negative δ18O ratios, increased dust content, decreased soluble aerosol concentrations, and reduced ice-crystal sizes, which characterize the LGS part of the cores. Total β radioactivity from shallow ice cores indicates that over the last 24 years the average accumulation rate has been ∼400 mm a−1 at the summit. The ice cores have been dated using a combination of annual layers in the insoluble dust and δ18O in the upper sections of core, visible dust layers which are annual, and ice-flow modeling. The oxygen-isotope record which serves as a temperature proxy indicates that the last 60 years have been the warmest in the entire record.
Having accurate data for ileal amino acid digestibility of a feed ingredient is one of the ways to enhance protein and nitrogen utilisation, improve poultry feeding efficiency, and mitigate ammonia emission and pollution in the environment. Moreover, the precise estimation of endogenous amino acid losses (EAAL) depends on formulating diets on digestible amino acid (DAA) basis. Numerous methods have been reported to determine the endogenous fractions including the regression method, the protein-free diet, and the total digestible nitrogen diet. The EAAL determined by these techniques can help in calculated corrected values for amino acid digestibility, termed true digestibility. Certain dietary components that can be called ‘specific losses’ could lead to higher losses than the basal calculation would indicate. To determine the basal plus specific losses (total endogenous losses), some researchers suggested the 15N-dilution method, which allows the determination of the actual digestibility. This method needs more studies and evaluations because there are some controversial issues about this methodology, such as the validity of the 15N-dilution technique when applied to any amino acid or to total nitrogen, the reference pool for the estimation of the labelling of endogenous fractions/secretions, anti-nutritional agents, the effect of bird age, mucin, different cereal grains, as well as the marker itself and the proper assessment. This review will be focused on the above issues, finding that the recently reported 15N isotopes single injection method could be an easy, time-saving, consistent, and reliable methodology for EAAL estimation in poultry.
Functionally graded material (FGM) has some particular characteristics due to the gradual variation of physical properties. The study on mechanical behavior of FGM is of great research value. In this work, a large scale FGM which filled with small glass spheres has been prepared by gravity assisted casting technique. The elastic material constants in static condition are measured. One optical experimental method, coherent gradient sensing (CGS), is introduced to study the mechanical behavior of FGM which has variation of material property in power-law. The governing equations of CGS which is used to represent the optics-mechanics relation of the singular field near the point of the outside force are derived based on the power-law asymptotic expansion. The experimental result shows this CGS method as a nondestructive methodology can be used to detect the damage in FGM with high accuracy.