We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
American silk moth, Antheraea polyphemus Cramer 1775 (Lepidoptera: Saturniidae), native to North America, has potential significance in sericulture for food consumption and silk production. To date, the phylogenetic relationship and divergence time of A. polyphemus with its Asian relatives remain unknown. To end these issues, two mitochondrial genomes (mitogenomes) of A. polyphemus from the USA and Canada respectively were determined. The mitogenomes of A. polyphemus from the USA and Canada were 15,346 and 15,345 bp in size, respectively, with only two transitions and five indels. The two mitogenomes both encoded typical mitochondrial 37 genes. No tandem repeat elements were identified in the A+T-rich region of A. polyphemus. The mitogenome-based phylogenetic analyses supported the placement of A. polyphemus within the genus Antheraea, and revealed the presence of two clades for eight Antheraea species used: one included A. polyphemus, A. assamensis Helfer, A. formosana Sonan and the other contained A. mylitta Drury, A. frithi Bouvier, A. yamamai Guérin-Méneville, A. proylei Jolly, and A. pernyi Guérin-Méneville. Mitogenome-based divergence time estimation further suggested that the dispersal of A. polyphemus from Asia into North America might have occurred during the Miocene Epoch (18.18 million years ago) across the Berling land bridge. This study reports the mitogenome of A. polyphemus that provides new insights into the phylogenetic relationship among Antheraea species and the origin of A. polyphemus.
Data-driven neural word embeddings (NWEs), grounded in distributional semantics, can capture various ranges of linguistic regularities, which can be further enriched by incorporating structured knowledge resources. This work proposes a novel post-processing approach for injecting semantic relationships into the vector space of both static and contextualized NWEs. Current solutions to retrofitting (RF) word embeddings often oversimplify the integration of semantic knowledge, neglecting the nuanced differences between relationships, which may result in suboptimal performance. Instead of applying multi-thresholding to distance boundaries in metric learning, we compute taxonomic similarity to dynamically adjust these boundaries during the semantic specialization of word embeddings. Benchmark evaluations on both static and contextualized word embeddings demonstrate that our dynamic-fitting (DF) approach produces SOTA correlation results of 0.78 and 0.76 on SimLex-999 and SimVerb-3500, respectively, highlighting the effectiveness of incorporating multiple semantic relationships in refining vector semantics. Our approach also outperforms existing RF methods in both supervised and unsupervised semantic relationships recognition tasks. It achieves top accuracy scores for hypernymy detection on the BLESS, WBLESS, and BIBLESS datasets (0.97, 0.89, and 0.83, respectively) and an F1 score of over 0.60 on four types of semantic relationship classification in the shared Subtask-2 of CogALex-V, surpassing all participant systems. In the analogy reasoning task of the Bigger Analogy Test Set, our approach outperforms existing RF methods on inferring relational similarity. These consistent improvements across various lexical semantics tasks suggest that our DF approach can effectively integrate distributional semantics with symbolic knowledge resources, thereby enhancing the representation capacity of word embeddings in downstream applications.
Nutrition intervention is an effective way to improve flesh qualities of fish. The effect of feed supplementation with glutamate (Glu) on flesh quality of gibel carp (Carassius gibelio) was investigated. In trial 1, the fish (initial weight: 37.49 ± 0.08 g) were fed two practical diets with 0 and 2% Glu supplementation. In trial 2, the fish (37.26 ± 0.04 g) were fed two purified diets with 0 and 3% Glu supplementation. The results after feeding trials showed that dietary Glu supplementation increased the hardness and springiness of muscle, whether using practical or purified diets. Glu-supplemented diets increased the thickness and density of myofibres and collagen content between myofibres. Furthermore, Glu promoted muscle protein deposition by regulating the IGF-1-AKT-mTOR signalling pathway, and enhanced the myofibre hypertrophy by upregulating genes related to myofibre growth and development (mef2a, mef2d, myod, myf5, mlc, tpi and pax7α). The protein deposition and myofibre hypertrophy in turn improved the flesh texture. In addition, IMP content in flesh increased when supplementing Glu whether to practical or to purified diet. Metabolomics confirmed that Glu promoted the deposition of muscle-flavoured substances and purine metabolic pathway most functioned, echoed by the upregulation of key genes (ampd, ppat and adsl) in purine metabolism. The sensory test also clarified that dietary Glu improved the flesh quality by enhancing the muscle texture and flavour. Conclusively, dietary Glu supplementation can improve the flesh quality in this fish, which can further support evidence from other studies more generally that improve flesh quality of cultured fish.
Depression is a complex mental health disorder with highly heterogeneous symptoms that vary significantly across individuals, influenced by various factors, including sex and regional contexts. Network analysis is an analytical method that provides a robust framework for evaluating the heterogeneity of depressive symptoms and identifying their potential clinical implications.
Objective:
To investigate sex-specific differences in the network structures of depressive symptoms in Asian patients diagnosed with depressive disorders, using data from the Research on Asian Psychotropic Prescription Patterns for Antidepressants, Phase 3, which was conducted in 2023.
Methods:
A network analysis of 10 depressive symptoms defined according to the National Institute for Health and Care Excellence guidelines was performed. The sex-specific differences in the network structures of the depressive symptoms were examined using the Network Comparison Test. Subgroup analysis of the sex-specific differences in the network structures was performed according to geographical region classifications, including East Asia, Southeast Asia, and South or West Asia.
Results:
A total of 998 men and 1,915 women with depression were analysed in this study. The analyses showed that all 10 depressive symptoms were grouped into a single cluster. Low self-confidence and loss of interest emerged as the most central nodes for men and women, respectively. In addition, a significant difference in global strength invariance was observed between the networks. In the regional subgroup analysis, only East Asian men showed two distinct clustering patterns. In addition, significant differences in global strength and network structure were observed only between East Asian men and women.
Conclusion:
The study highlights the sex-specific differences in depressive symptom networks across Asian countries. The results revealed that low self-confidence and loss of interest are the main symptoms of depression in Asian men and women, respectively. The network connections were more localised in men, whereas women showed a more diverse network. Among the Asian subgroups analysed, only East Asians exhibited significant differences in network structure. The considerable effects of neurovegetative symptoms in men may indicate potential neurobiological underpinnings of depression in the East Asian population.
Parkinson’s disease (PD) is a severe neurodegenerative disorder characterized by prominent motor and non-motor (e.g., cognitive) abnormalities. Notwithstanding Food and Drug Administration (FDA)-approved treatments (e.g., L-dopa), most persons with PD do not adequately benefit from the FDA-approved treatments and treatment emergent adverse events are often reasons for discontinuation. To date, no current therapy for PD is disease modifying or curative. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are central nervous system (CNS) penetrant and have shown to be neuroprotective against oxidative stress, neuroinflammation, and insulin resistance, as well as promoting neuroplasticity. Preclinical evidence suggests that GLP-1RAs also attenuate the accumulation of α-synuclein. The cellular and molecular effects of GLP-1RAs provide a basis to hypothesize putative therapeutic benefit in individuals with PD. Extant preclinical and clinical trial evidence in PD provide preliminary evidence of clinically meaningful benefit in the cardinal features of PD. Herein, we synthesize extant preclinical and early-phase clinical evidence, suggesting that GLP-1RAs may be beneficial as a treatment and/or illness progression modification therapeutic in PD.
Noise source identification has been a long-standing challenge for decades. Although it is known that sound sources are closely related to flow structures, the underlying physical mechanisms remain controversial. This study develops a sound source identification method based on longitudinal and transverse process decomposition (LTD). Large-eddy simulations were performed on the flow around a cylinder at a Reynolds number of 3900. Using the new LTD method, sound sources in the cylinder flow were identified, and the mechanisms linking flow structures with noise generation were discussed in detail. Identifying the physical sound sources from two levels, low-order theory and high-order theory, the physical mechanism of wall sound sources was also analysed. Results indicate that the sound sources in the flow field mainly come from the leading edge, shear layer and wake region of the cylinder. The high-order theory reveals that sound sources are correlated with the spatio-temporal evolution of enstrophy, vortex stretching and surface deformation processes, this reflecting the coupling between transversal and longitudinal flow fields. The boundary thermodynamic flux and boundary dilatation flux distribution of the cylinder were analysed. Results indicate that the wall sound sources mainly come from the separation point and have a disorderly distribution on the leeward side of the cylinder, which is the main region where longitudinal variables enter the fluid from the wall surface, and the wall sound source is related to the boundary enstrophy flux.
Multimorbidity, especially physical–mental multimorbidity, is an emerging global health challenge. However, the characteristics and patterns of physical–mental multimorbidity based on the diagnosis of mental disorders in Chinese adults remain unclear.
Methods
A cross-sectional study was conducted from November 2004 to April 2005 among 13,358 adults (ages 18–65years) residing in Liaoning Province, China, to evaluate the occurrence of physical–mental multimorbidity. Mental disorders were assessed using the Composite International Diagnostic Interview (version 1.0) with reference to the Diagnostic and Statistical Manual of Mental Disorders (3rd Edition Revised), while physical diseases were self-reported. Physical–mental multimorbidity was assessed based on a list of 16 physical and mental morbidities with prevalence ≥1% and was defined as the presence of one mental disorder and one physical disease. The chi-square test was used to calculate differences in the prevalence and comorbidity of different diseases between the sexes. A matrix heat map was generated of the absolute number of comorbidities for each disease. To identify complex associations and potential disease clustering patterns, a network analysis was performed, constructing a network to explore the relationships within and between various mental disorders and physical diseases.
Results
Physical–mental multimorbidity was confirmed in 3.7% (498) of the participants, with a higher prevalence among women (4.2%, 282) than men (3.3%, 216). The top three diseases with the highest comorbidity rate and average number of comorbidities were dysphoric mood (86.3%; 2.86), social anxiety disorder (77.8%; 2.78) and major depressive disorder (77.1%; 2.53). A physical–mental multimorbidity network was visually divided into mental and physical domains. Additionally, four distinct multimorbidity patterns were identified: ‘Affective-addiction’, ‘Anxiety’, ‘Cardiometabolic’ and ‘Gastro-musculoskeletal-respiratory’, with the digestive-respiratory-musculoskeletal pattern being the most common among the total sample. The affective-addiction pattern was more prevalent in men and rural populations. The cardiometabolic pattern was more common in urban populations.
Conclusions
The physical–mental multimorbidity network structure and the four patterns identified in this study align with previous research, though we observed notable differences in the proportion of these patterns. These variations highlight the importance of tailored interventions that address specific multimorbidity patterns while maintaining broader applicability to diverse populations.
Recent studies have increasingly utilized gradient metrics to investigate the spatial transitions of brain organization, enabling the conversion of macroscale brain features into low-dimensional manifold representations. However, it remains unclear whether alterations exist in the cortical morphometric similarity (MS) network gradient in patients with schizophrenia (SCZ). This study aims to examine potential differences in the principal MS gradient between individuals with SCZ and healthy controls and to explore how these differences relate to transcriptional profiles and clinical phenomenology.
Methods
MS network was constructed in this study, and its gradient of the network was computed in 203 patients with SCZ and 201 healthy controls, who shared the same demographics in terms of age and gender. To examine irregularities in the MS network gradient, between-group comparisons were carried out, and partial least squares regression analysis was used to study the relationships between the MS network gradient-based variations in SCZ, and gene expression patterns and clinical phenotype.
Results
In contrast to healthy controls, the principal MS gradient of patients with SCZ was primarily significantly lower in sensorimotor areas, and higher in more areas. In addition, the aberrant gradient pattern was spatially linked with the genes enriched for neurobiologically significant pathways and preferential expression in various brain regions and cortical layers. Furthermore, there were strong positive connections between the principal MS gradient and the symptomatologic score in SCZ.
Conclusions
These findings showed changes in the principal MS network gradient in SCZ and offered potential molecular explanations for the structural changes underpinning SCZ.
Recent studies utilizing AI-driven speech-based Alzheimer’s disease (AD) detection have achieved remarkable success in detecting AD dementia through the analysis of audio and text data. However, detecting AD at an early stage of mild cognitive impairment (MCI), remains a challenging task, due to the lack of sufficient training data and imbalanced diagnostic labels. Motivated by recent advanced developments in Generative AI (GAI) and Large Language Models (LLMs), we propose an LLM-based data generation framework, leveraging prior knowledge encoded in LLMs to generate new data samples. Our novel LLM generation framework introduces two novel data generation strategies, namely, the cross-lingual and the counterfactual data generation, facilitating out-of-distribution learning over new data samples to reduce biases in MCI label prediction due to the systematic underrepresentation of MCI subjects in the AD speech dataset. The results have demonstrated that our proposed framework significantly improves MCI Detection Sensitivity and F1-score on average by a maximum of 38% and 31%, respectively. Furthermore, key speech markers in predicting MCI before and after LLM-based data generation have been identified to enhance our understanding of how the novel data generation approach contributes to the reduction of MCI label prediction biases, shedding new light on speech-based MCI detection under low data resource constraint. Our proposed methodology offers a generalized data generation framework for improving downstream prediction tasks in cases where limited and/or imbalanced data have presented significant challenges to AI-driven health decision-making. Future study can focus on incorporating more datasets and exploiting more acoustic features for speech-based MCI detection.
Extant literature implicates the role of glucagon-like peptide-1 (GLP-1) and GLP-1 receptor agonists (GLP-1RAs) on modulating alcohol-associated behaviours, with a particular emphasis of these agents on neural circuits subserving reward and appetite control. Herein, we explore the potential effects of GLP-1RAs on alcohol-associated behaviours in brain regions implicated in reward processing facilitating the repurposing of these agents for the treatment and prevention of problematic drinking. Understanding how GLP-1’s analogues interact with alcohol-related behaviours may underscore the development of therapeutic strategies for alcohol use disorder (AUD) and those with comorbid metabolic disorders.
Methods:
A systematic review was conducted, wherein relevant literature was identified through Web of Science, PubMed, and OVID (MedLINE, Embase, AMED, PsycInfo, JBI EBP) from database inception to October 27th, 2024. Preclinical and clinical studies examining the association between GLP-1RAs and alcohol-related behaviours were assessed.
Results:
Preclinical studies (n = 19) indicate that GLP-1RAs attenuate alcohol-related behaviours, with exenatide demonstrating significant dose-dependent effects in high alcohol-consuming phenotypes. Semaglutide and liraglutide are associated with reduced alcohol intake, though their effects were often transient. In human studies (n = 2) with AUD, semaglutide significantly reduced alcohol consumption, while exenatide showed mixed results, with reductions in alcohol drinking within high BMI subpopulations.
Discussion:
Extant preclinical and clinical literature provides preliminary support for the potential therapeutic role of GLP-1RAs in attenuating alcohol consumption and preference. There is a need for large well controlled studies evaluating the effect of GLP-1RAs as a treatment strategy for behavioural modifications in individuals living with alcohol use disorder.
Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-1 receptor agonist (GLP-1 RA) administration has been associated with neuroproliferative effects and modulatory effects in neuronal pathways. Herein, we conducted a comprehensive synthesis of the effects of GLP-1 and GLP-1 RAs on neurogenesis.
Methods:
We examined studies that investigate changes in neurogenesis mediated by GLP-1 and GLP-1 RA administration in both human and animal populations. Relevant articles were retrieved through OVID (MedLine, Embase, AMED, PsychINFO, JBI EBP Database), PubMed, and Web of Science from database inception to July 2nd. Primary studies investigating the role of GLP-1 and GLP-1 RAs on neurogenesis were included for analysis.
Results:
GLP-1 and GLP-1 RAs (i.e. exenatide, geniposide, liraglutide, lixisenatide, and semaglutide), increased neurogenesis within the dentate gyrus, hippocampus, olfactory bulb, and the medial striatum in animal models. Additionally, GLP-1 and GLP-1 RAs were associated with modulating changes in multiple apoptotic pathways and upregulating survival pathways.
Discussion:
GLP-1 and GLP-1 RAs are positively associated with neurogenesis. This effect may have translational implications insofar as disparate mental disorders that are characterised by neurogenesis defects (e.g. depressive disorders and neurocognitive disorders) may be benefitted by these agents.
The previous study indicated that ubiquitination is involved in the freezing tolerance of hydrated seeds. Parthenolide (PN), inducing the ubiquitination of MDM2, an E3 ring-finger ubiquitin ligase, adversely affects the freezing tolerance of hydrated lettuce seeds. Therefore, a proteomics analysis was conducted to identify PN's targets in hydrated seeds exposed to cooling conditions. Several pathways, including oxidative phosphorylation (KEGG00190), amino sugar and nucleotide sugar metabolism (KEGG00520), and biosynthesis of nucleotide sugars (KEGG01250), were enriched in the PN treatment under slow-cooling conditions (3°C h−1, P < 0.05). Among the proteins in oxidative phosphorylation, the expression of NADH dehydrogenases and ATP synthases (ATPsyn) decreased in PN treatment. In contrast, uncoupling proteins increased after PN treatment, which led to the dissociation of the electron transport chain from ATP synthesis. Treatments with rotenone, dicoumarol, and oligomycin (i.e., oxidative phosphorylation inhibitors) decreased the survival rate of hydrated seeds under freezing conditions, which indicated that energy metabolism was related to the freezing tolerance of hydrated seeds. The predicted interactions between PN and MDM2-like proteins of Lactuca indicated that LsMDM2-5 forms two potential hydrogen bonds with PN. Furthermore, based on AlphaFold predictions and yeast 2-hybrid results, MDM2-5 might interact directly with NADH2. The knockdown of MDM2-5 by RNAi caused a higher level of NADH2 and ATPsyn and a higher freezing tolerance of hydrated seeds. This indicated that MDM2 played negative roles in regulating ATP synthesis and freezing tolerance of hydrated seeds.
In this paper, on–off switching digitization of a W-band variable gain power amplifier (VGPA) with above 60 dB dynamic range is introduced for large-scale phased array. Digitization techniques of on–off switching modified stacking transistors with partition are proposed to optimize configuration of control sub-cells. By the proposed techniques, gain control of a radio frequency variable gain amplifier (VGA) could be highly customized for both coarse and fine switching requirements instead of using additional digital-to-analog converters to tune the overall amplifier bias. The designed VGA in 130 nm SiGe has achieved switchable gain range from −46.4 to 20.6 dB and power range from −25.0 to 15.7 dBm at W band. The chip size of the fabricated VGPA is about 0.31 mm × 0.1 mm.
Attention-deficit/hyperactivity disorder (ADHD) patients exhibit characteristics of impaired working memory (WM) and diminished sensory processing function. This study aimed to identify the neurophysiologic basis underlying the association between visual WM and auditory processing function in children with ADHD.
Methods
The participants included 86 children with ADHD (aged 6–15 years, mean age 9.66 years, 70 boys, and 16 girls) and 90 typically developing (TD) children (aged 7–16 years, mean age 10.30 years, 66 boys, and 24 girls). Electroencephalograms were recorded from all participants while they performed an auditory discrimination task (oddball task). The visual WM capacity and ADHD symptom severity were measured for all participants.
Results
Compared with TD children, children with ADHD presented a poorer visual WM capacity and a smaller mismatch negativity (MMN) amplitude. Notably, the smaller MMN amplitude in children with ADHD predicted a less impaired WM capacity and milder inattention symptom severity. In contrast, the larger MMN amplitude in TD children predicted a better visual WM capacity.
Conclusions
Our results suggest an intimate relationship and potential shared mechanism between visual WM and auditory processing function. We liken this shared mechanism to a total cognitive resource limit that varies between groups of children, which could drive correlated individual differences in auditory processing function and visual WM. Our findings provide a neurophysiological correlate for reports of WM deficits in ADHD patients and indicate potential effective markers for clinical intervention.
Cross-language internet memes have emerged as a unique and popular mode of online communication, combining bilingual elements with visually textual components. These memes exhibit distinctive characteristics at semantic, syntactic, and pragmatic levels, rendering them a noteworthy semiotic phenomenon in contemporary digital culture. To deepen our understanding of cross-language internet memes, this study investigates user perceptions through a questionnaire, employing SPSS Statistics software for analysis. Applying a social semiotic approach, we decipher the semiotic mechanisms of cross-language memes, shedding light on their potential implications for identity construction. Additionally, we reflect on two prominent trends in internet meme development: the shift from monomodal to multimodal communication and from monolingual to multilingual expressions. This research hopes to provide insights for meme research and online discourse investigations.
We present a theory that quantifies the interplay between intrapore and interpore flow variabilities and their impact on hydrodynamic dispersion. The theory reveals that porous media with varying levels of structural disorder exhibit notable differences in interpore flow variability, characterised by the flux-weighted probability density function (PDF), $\hat {\psi }_\tau (\tau ) \sim \tau ^{-\theta -2}$, for advection times $\tau$ through conduits. These differences result in varying relative strengths of interpore and intrapore flow variabilities, leading to distinct scaling behaviours of the hydrodynamic dispersion coefficient $D_L$, normalised by the molecular diffusion coefficient $D_m$, with respect to the Péclet number $Pe$. Specifically, when $\hat {\psi }_\tau (\tau )$ exhibits a broad distribution of $\tau$ with $\theta$ in the range of $(0, 1)$, the dispersion undergoes a transition from power-law scaling, $D_L/D_m \sim Pe^{2-\theta }$, to linear scaling, $D_L/D_m \sim Pe$, and eventually to logarithmic scaling, $D_L/D_m \sim Pe\ln (Pe)$, as $Pe$ increases. Conversely, when $\tau$ is narrowly distributed or when $\theta$ exceeds 1, dispersion consistently follows a logarithmic scaling, $D_L/D_m \sim Pe\ln (Pe)$. The power-law and linear scaling occur when interpore variability predominates over intrapore variability, while logarithmic scaling arises under the opposite condition. These theoretical predictions are supported by experimental data and network simulations across a broad spectrum of porous media.
This study aimed to demonstrate the utilization value of 1PN embryos. The 1PN zygotes collected from December 2021 to September 2022 were included in this study. The embryo development, the pronuclear characteristics, and the genetic constitutions were investigated. The overall blastocyst formation and good-quality blastocyst rates in 1PN zygotes were 22.94 and 16.24%, significantly lower than those of 2PN zygotes (63.25 and 50.23%, respectively, P = 0.000). The pronuclear characteristics were found to be correlated with the developmental potential. When comparing 1PN zygotes that developed into blastocysts to those that arrested, the former exhibited a significantly larger area (749.49 ± 142.77 vs. 634.00 ± 119.05, P = 0.000), a longer diameter of pronuclear (29.81 ± 3.08 vs. 27.30 ± 3.00, P = 0.000), and a greater number of nucleolar precursor body (NPB) (11.56 ± 3.84 vs. 7.19 ± 2.73, P = 0.000). Among the tested embryos, the diploidy euploidy rate was significantly higher in blastocysts in comparison with the arrested embryos (66.67 vs. 11.76%, P = 0.000), which was also significantly higher in IVF-1PN blastocysts than in ICSI-1PN blastocysts (75.44 vs. 25.00%, P = 0.001). However, the pronuclear characteristics were not found to be linked to the chromosomal ploidy once they formed blastocysts.
In summary, while the developmental potential of 1PN zygotes is reduced, our study shows that, in addition to the reported pronuclear area and diameter, the number of NPB is also associated with their developmental potential. The 1PN blastocysts exhibit a high diploidy euploidy rate, are recommend to be clinically used post genetic testing, especially for patients who do not have other 2PN embryos available.