We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Multimorbidity, especially physical–mental multimorbidity, is an emerging global health challenge. However, the characteristics and patterns of physical–mental multimorbidity based on the diagnosis of mental disorders in Chinese adults remain unclear.
Methods
A cross-sectional study was conducted from November 2004 to April 2005 among 13,358 adults (ages 18–65years) residing in Liaoning Province, China, to evaluate the occurrence of physical–mental multimorbidity. Mental disorders were assessed using the Composite International Diagnostic Interview (version 1.0) with reference to the Diagnostic and Statistical Manual of Mental Disorders (3rd Edition Revised), while physical diseases were self-reported. Physical–mental multimorbidity was assessed based on a list of 16 physical and mental morbidities with prevalence ≥1% and was defined as the presence of one mental disorder and one physical disease. The chi-square test was used to calculate differences in the prevalence and comorbidity of different diseases between the sexes. A matrix heat map was generated of the absolute number of comorbidities for each disease. To identify complex associations and potential disease clustering patterns, a network analysis was performed, constructing a network to explore the relationships within and between various mental disorders and physical diseases.
Results
Physical–mental multimorbidity was confirmed in 3.7% (498) of the participants, with a higher prevalence among women (4.2%, 282) than men (3.3%, 216). The top three diseases with the highest comorbidity rate and average number of comorbidities were dysphoric mood (86.3%; 2.86), social anxiety disorder (77.8%; 2.78) and major depressive disorder (77.1%; 2.53). A physical–mental multimorbidity network was visually divided into mental and physical domains. Additionally, four distinct multimorbidity patterns were identified: ‘Affective-addiction’, ‘Anxiety’, ‘Cardiometabolic’ and ‘Gastro-musculoskeletal-respiratory’, with the digestive-respiratory-musculoskeletal pattern being the most common among the total sample. The affective-addiction pattern was more prevalent in men and rural populations. The cardiometabolic pattern was more common in urban populations.
Conclusions
The physical–mental multimorbidity network structure and the four patterns identified in this study align with previous research, though we observed notable differences in the proportion of these patterns. These variations highlight the importance of tailored interventions that address specific multimorbidity patterns while maintaining broader applicability to diverse populations.
Cognitive impairment, a major determinant of poor functioning in schizophrenia, had limited responses to existing antipsychotic drugs. The limited efficacy could be due to regional differences in the dysregulation of the dopamine system. This study investigated striatal and peripheral dopaminergic makers in schizophrenia and their relationship with cognitive impairment.
Methods
Thirty-three patients with schizophrenia and 36 age- and sex-matched healthy controls (HC) participated. We evaluated their cognitive performance, examined the availability of striatal dopamine transporter (DAT) using single-photon emission computed tomography with 99mTc-TRODAT, and measured plasma levels of dopaminergic precursors (phenylalanine and tyrosine) and three branched-chain amino acids (BCAA) that compete with precursors for brain uptake via ultra-performance liquid chromatography.
Results
Schizophrenia patients exhibited lower cognitive performance, decreased striatal DAT availability, and reduced levels of phenylalanine, tyrosine, leucine, and isoleucine, and the ratio of phenylalanine plus tyrosine to BCAA. Within the patient group, lower DAT availability in the left caudate nucleus (CN) or putamen was positively associated with attention deficits. Meanwhile, lower tyrosine levels and the ratio of phenylalanine plus tyrosine to BCAA were positively related to executive dysfunction. Among all participants, DAT availability in the right CN or putamen was positively related to memory function, and plasma phenylalanine level was positively associated with executive function.
Conclusions
This study supports the role of dopamine system abnormalities in cognitive impairment in schizophrenia. The distinct associations between different dopaminergic alterations and specific cognitive domain impairments suggest the potential need for multifaceted treatment approaches to target these impairments.
in a bounded domain $\Omega \subset \mathbb {R}^N(N=3,\,4,\,5)$ with smooth boundary $\partial \Omega$. It is shown that if $m>\max \{1,\,\frac {3N-2}{2N+2}\}$, for any reasonably smooth nonnegative initial data, the corresponding no-flux type initial-boundary value problem possesses a globally bounded weak solution. Furthermore, we prove that the solution converges to the spatially homogeneous equilibrium $(\bar {u}_0,\,0)$ in an appropriate sense as $t\rightarrow \infty$, where $\bar {u}_0=\frac {1}{|\Omega |}\int _\Omega u_0$. This result not only partly extends the previous global boundedness result in Fan and Jin (J. Math. Phys.58 (2017), 011503) and Wang and Xiang (Z. Angew. Math. Phys.66 (2015), 3159–3179) to $m>\frac {3N-2}{2N}$ in the case $N\geq 3$, but also partly improves the global existence result in Zheng and Wang (Discrete Contin. Dyn. Syst. Ser. B22 (2017), 669–686) to $m>\frac {3N}{2N+2}$ when $N\geq 2$.
The development of Maritime Autonomous Surface Ship (MASS) is progressing rapidly within the maritime industry. Degree Two of MASS (MASS-DoA2), balancing human oversight and autonomous efficiency, will likely gain regulatory approval and industry acceptance. MASS-DoA2 possesses different control modes to adapt to various scenarios. However, the control-switching mechanisms among operators at shore control centres, autonomous navigation systems and number of seafarers onboard remain ambiguous, which poses a new risk that may significantly influence navigation safety. This study focuses on MASS-DoA2 and carries out a systematic review of autonomous ship guidelines. A questionnaire was designed based on the review findings, and a survey was carried out among captains and researchers in related fields. The review identified 11 control-switching scenarios with suggested takeover agents and the switching process and outlined the priority relationship between various takeover agents. Finally, a control-switching framework for MASS – DoA2 is proposed. It can serve as a theoretical framework for research on MASS's dynamic degree of autonomy and provide a reference for maritime regulatory authorities in establishing MASS – DoA2 control-switching mechanisms.
This work reports experimental observation and theoretical explanation of the dynamics and morphology of a droplet passing through a soap film. During the process, the film undergoes four sequential responses: (1) film deformation upon droplet impact; (2) drop–film detachment; (3) coalescence of the film shell with the drop; (4) peel-off of the film shell. Physical models and the corresponding analytical expressions are developed to reveal the underlying physics for the observed four responses. It is identified that the film is an elongated catenoid under continuous stretch by the droplet, and that they separate at the fixed height of 5.8 times of the droplet radius while the detach point is located at the centre of the height. After separation, the droplet is wrapped with a film shell, which is then punctured by the ring tip of the converging surface wave at the impacting Weber number range of [45, 225]. The film shell then coalesces with the droplet, falls off with a fixed velocity and is eventually ejected as a bubble leaving the droplet with a transplanted surface of the soap solution.
Cognitive impairment is common in late-life depression, which may increase Alzheimer disease (AD) risk. Therefore, we aimed to investigate whether late-life major depressive disorder (MDD) has worse cognition and increases the characteristic AD neuropathology. Furthermore, we carried out a comparison between treatment-resistant depression (TRD) and non-TRD. We hypothesized that patients with late-life depression and TRD may have increased β-amyloid (Aβ) deposits in brain regions responsible for global cognition.
Methods
We recruited 81 subjects, including 54 MDD patients (27 TRD and 27 non-TRD) and 27 matched healthy controls (HCs). Neurocognitive tasks were examined, including Mini-Mental State Examination and Montreal Cognitive Assessment to detect global cognitive functions. PET with Pittsburgh compound-B and fluorodeoxyglucose were used to capture brain Aβ pathology and glucose use, respectively, in some patients.
Results
MDD patients performed worse in Montreal Cognitive Assessment (p = 0.003) and had more Aβ deposits than HCs across the brain (family-wise error-corrected p < 0.001), with the most significant finding in the left middle frontal gyrus. Significant negative correlations between global cognition and prefrontal Aβ deposits existed in MDD patients, whereas positive correlations were noted in HCs. TRD patients had significantly more deposits in the left-sided brain regions (corrected p < 0.001). The findings were not explained by APOE genotypes. No between-group fluorodeoxyglucose difference was detected.
Conclusions
Late-life depression, particularly TRD, had increased brain Aβ deposits and showed vulnerability to Aβ deposits. A detrimental role of Aβ deposits in global cognition in patients with late-onset or non-late-onset MDD supported the theory that late-life MDD could be a risk factor for AD.
To improve Antarctic sea-ice simulations and estimations, an ensemble-based Data Assimilation System for the Southern Ocean (DASSO) was developed based on a regional sea ice–ocean coupled model, which assimilates sea-ice thickness (SIT) together with sea-ice concentration (SIC) derived from satellites. To validate the performance of DASSO, experiments were conducted from 15 April to 14 October 2016. Generally, assimilating SIC and SIT can suppress the overestimation of sea ice in the model-free run. Besides considering uncertainties in the operational atmospheric forcing data, a covariance inflation procedure in data assimilation further improves the simulation of Antarctic sea ice, especially SIT. The results demonstrate the effectiveness of assimilating sea-ice observations in reconstructing the state of Antarctic sea ice, but also highlight the necessity of more reasonable error estimation for the background as well as the observation.
With the assimilation of satellite-based sea-ice thickness (SIT) data, the new SIT reanalysis from the Towards an Operational Prediction system for the North Atlantic European coastal Zones (TOPAZ4) was released from 2014 to 2018. Apart from assimilating sea-ice concentration and oceanic variables, TOPAZ4 further assimilates CS2SMOS SIT. In this study, the 5-year reanalysis is compared with CS2SMOS, the Pan-Arctic Ice-Ocean Modeling and Assimilating System (PIOMAS) and the Combined Model and Satellite Thickness (CMST). Moreover, we evaluate TOPAZ4 SIT with field observations from upward-looking sonar (ULS), ice mass-balance buoys, Operation IceBridge Quicklook and Sea State Ship-borne Observations. The results indicate TOPAZ4 well reproduces the spatial characteristics of the Arctic SIT distributions, with large differences with CS2SMOS/PIOMAS/CMST mainly restricted to the Atlantic Sector and to the month of September. TOPAZ4 shows thinner ice in March and April, especially to the north of the Canadian Arctic Archipelago with a mean bias of −0.30 m when compared to IceBridge. Besides, TOPAZ4 simulates thicker ice in the Beaufort Sea when compared to ULS, with a mean bias of 0.11 m all year round. The benefit from assimilating SIT data in TOPAZ4 is reflected in a 34% improvement in root mean square deviation.
The surface topology of biomaterial has a definite effect on the growth behavior of nerve cells for peripheral nerve regeneration. In this study, the silk fibroin (SF) film with different anisotropic microgroove/ridge was constructed by micropatterning technology. The effects of topologies width on the directional growth of dorsal root ganglion (DRG) neurons were evaluated. The results showed that the topological structure of the SF film with higher SF concentration was more clear and complete. The microtopography of the SF film with a concentration of 15% and a groove width of around 30 μm could effectively guide the directional growth of the nerve fibers of DRG. And nerve fibers could obviously form nerve fiber bundles which may have a certain pavement effect on the recovery of nerve function. The study indicated that the SF film with a specific width of the topological structure may have potential applications in the field of directional nerve regeneration.
Antibiotics are designed to affect gut microbiota and subsequently gut homeostasis. However, limited information exists about short- and long-term effects of early antibiotic intervention (EAI) on gut homeostasis (especially for the small intestine) of pigs following antibiotic withdrawal. We investigated the impact of EAI on specific bacterial communities, microbial metabolites and mucosal immune parameters in the small intestine of later-growth-stage pigs fed with diets differing in CP levels. Eighteen litters of piglets were fed creep feed with or without antibiotics from day 7 to day 42. At day 42, pigs within each group were offered a normal- or low-CP diet. Five pigs per group were slaughtered at days 77 and 120. At day 77, EAI increased Enterobacteriaceae counts in the jejunum and ileum and decreased Bifidobacterium counts in the jejunum and ileum (P < 0.05). Moreover, tryptamine, putrescine, secretory immunoglobulin (Ig) A and IgG concentrations in the ileum and interleukin-10 (IL-10) mRNA and protein levels in the jejunum and ileum were decreased in pigs with EAI (P < 0.05). At day 120, EAI only suppressed Clostridium cluster XIVa counts in the jejunum and ileum (P < 0.05). These results suggest that EAI has a short-term effect on specific bacterial communities, amino acid decarboxylation and mucosal immune parameters in the small intestine (particularly in the ileum). At days 77 and 120, feeding a low-CP diet affected Bifidobacterium, Clostridium cluster IV, Clostridium cluster XIVa and Enterobacteriaceae counts in the jejunum or ileum (P < 0.05). Moreover, feeding a low-CP diet increased the concentrations of Igs in the jejunum and decreased pro-inflammatory cytokines levels in the jejunum and ileum (P < 0.05). At day 120, feeding a low-CP diet increased short-chain fatty acid concentrations, reduced ammonia and spermidine concentrations and up-regulated genes related to barrier function in the jejunum and ileum (P < 0.05). These results suggest that feeding a low-CP diet changes specific bacterial communities and intestinal metabolite concentrations and modifies mucosal immune parameters. These findings contribute to our understanding on the duration of the impact of EAI on gut homeostasis and may provide basis data for nutritional modification in young pigs after antibiotic treatment.
Post-stroke depression (PSD) is the most common psychiatric complication facing stroke survivors and has been associated with increased distress, physical disability, poor rehabilitation, and suicidal ideation. However, the pathophysiological mechanisms underlying PSD remain unknown, and no objective laboratory-based test is available to aid PSD diagnosis or monitor progression.
Methods:
Here, an isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic approach was performed to identify differentially expressed proteins in plasma samples obtained from PSD, stroke, and healthy control subjects.
Results:
The significantly differentiated proteins were primarily involved in lipid metabolism and immunoregulation. Six proteins associated with these processes – apolipoprotein A-IV (ApoA-IV), apolipoprotein C-II (ApoC-II), C-reactive protein (CRP), gelsolin, haptoglobin, and leucine-rich alpha-2-glycoprotein (LRG) – were selected for Western blotting validation. ApoA-IV expression was significantly upregulated in PSD as compared to stroke subjects. ApoC-II, LRG, and CRP expression were significantly downregulated in both PSD and HC subjects relative to stroke subjects. Gelsolin and haptoglobin expression were significantly dysregulated across all three groups with the following expression profiles: gelsolin, healthy control > PSD > stroke subjects; haptoglobin, stroke > PSD > healthy control.
Conclusions:
Early perturbation of lipid metabolism and immunoregulation may be involved in the pathophysiology of PSD. The combination of increased gelsolin levels accompanied by decreased haptoglobin levels shows promise as a plasma-based diagnostic biomarker panel for detecting increased PSD risk in post-stroke patients.
In an effort to improve the reliability of Arctic sea-ice predictions, an ensemble-based Arctic Ice Ocean Prediction System (ArcIOPS) has been developed to meet operational demands. The system is based on a regional Arctic configuration of the Massachusetts Institute of Technology general circulation model. A localized error subspace transform ensemble Kalman filter is used to assimilate the weekly merged CryoSat-2 and Soil Moisture and Ocean Salinity sea-ice thickness data together with the daily Advanced Microwave Scanning Radiometer 2 (AMSR2) sea-ice concentration data. The weather forecasts from the Global Forecast System of the National Centers for Environmental Prediction drive the sea ice–ocean coupled model. The ensemble mean sea-ice forecasts were used to facilitate the Chinese National Arctic Research Expedition in summer 2017. The forecasted sea-ice concentration is evaluated against AMSR2 and Special Sensor Microwave Imager/Sounder sea-ice concentration data. The forecasted sea-ice thickness is compared to the in-situ observations and the Pan-Arctic Ice-Ocean Modeling and Assimilation System. These comparisons show the promising potential of ArcIOPS for operational Arctic sea-ice forecasts. Nevertheless, the forecast bias in the Beaufort Sea calls for a delicate parameter calibration and a better design of the assimilation system.
Research suggests an association between metabolic disorders, such as type 2 diabetes mellitus (T2DM), and schizophrenia. However, the risk of metabolic disorders in the unaffected siblings of patients with schizophrenia remains unclear.
Methods
Using the Taiwan National Health Insurance Research Database, 3135 unaffected siblings of schizophrenia probands and 12,540 age-/sex-matched control subjects were included and followed up to the end of 2011. Individuals who developed metabolic disorders during the follow-up period were identified.
Results
The unaffected siblings of schizophrenia probands had a higher prevalence of T2DM (3.4% vs. 2.6%, p = 0.010) than the controls. Logistic regression analyses with the adjustment of demographic data revealed that the unaffected siblings of patients with schizophrenia were more likely to develop T2DM (odds ratio [OR]: 1.39, 95% confidence interval [CI]: 1.10–1.75) later in life compared with the control group. Moreover, only female siblings of schizophrenia probands had an increased risk of hypertension (OR: 1.47, 95% CI: 1.07–2.01) during the follow-up compared with the controls.
Discussion
The unaffected siblings, especially sisters, of schizophrenia probands had a higher prevalence of T2DM and hypertension compared with the controls. Our study revealed a familial link between schizophrenia and T2DM in a large sample. Additional studies are required to investigate the shared pathophysiology of schizophrenia and T2DM.
In this paper, we study the initial boundary value problem for a class of fourth order damped wave equations with arbitrary positive initial energy. In the framework of the energy method, we further exploit the properties of the Nehari functional. Finally, the global existence and finite time blow-up of solutions are obtained.
In this paper, drop impact onto a sphere is numerically investigated at moderate Reynolds and Weber numbers. It is naturally expected that the aspect ratio of the sphere to the drop, $\unicode[STIX]{x1D706}_{r}$, would make a big difference to drop spreading and retraction on the sphere, compared with drop impact onto a flat substrate. To quantitatively assess the effect of $\unicode[STIX]{x1D706}_{r}$, a diffuse-interface immersed-boundary method is adopted after being validated against experiments. With the help of numerical simulations, we identify the key regimes in the spreading and retraction, analyse the results by scaling laws, and quantitatively evaluate the effect of $\unicode[STIX]{x1D706}_{r}$ on the impact dynamics. We find that the thickness of the liquid film spreading on the sphere can be well approximated by $h_{L,\infty }(1+3/4\unicode[STIX]{x1D706}_{r}^{-3/2})$, where $h_{L,\infty }$ represents the film thickness of drop impact on a flat substrate. At the early stage of spreading, the temporal variation of the wetted area is independent of $\unicode[STIX]{x1D706}_{r}$ when the time is rescaled by the thickness of the liquid film. Drops are observed to retract on the sphere at a roughly constant speed, and the predictions of theoretical analysis are in good agreement with numerical results.
Phase predictions and characterizations on as-solidified septenary refractory high-entropy alloy, CrMoNbReTaVW, are presented. The simulated solidification process predicts a single body-centered-cubic (BCC) crystal structure with the tendency of compositional segregation. X-ray diffraction results confirm the “single-phase-like” BCC structure, while further experimental characterizations reveal the existence of multiple grains with significantly different compositions yet the same crystal structure and similar lattice parameters.
Mechanical integrity of the interfacial region between ceramic coatings and substrates is critical to high performance coated mechanical components and manufacturing tools. Mechanical failure of the coating/substrate interfacial region often leads to catastrophic failure of the coated system as a whole. Despite extensive research over the past two decades, quantitative assessment of the mechanical response of coating/substrate interfacial regions remains a challenge. The lack of reliable protocols for measuring the mechanical response of coating/substrate interfacial regions quantitatively hampers the understanding of key factors controlling the mechanical integrity of coating/substrate interfaces. In this paper, we describe a new micro-pillar testing protocol for quantitative measurement of critical stresses for inducing shear failure of interfacial regions in ceramic-coating/metal-adhesion-layer/substrate systems. We observe significant differences in the critical stress for shear failure of interfacial regions in CrN/Cu/Si, CrN/Cr/Si, and CrN/Ti/Si systems. The present testing protocol has general applicability to a wide range of coating/interlayer/substrate systems.
Axial compression was conducted on micro-pillars, in which polycrystalline Cu thin films were sandwiched between CrN and Si. Plastic flow of Cu was achieved, when the Cu films are inclined either at 90° or 45° with respect to the pillar axis. The texture of Cu films was altered by changing the template on which film growth occurred. The Cu microstructure was further altered by post-deposition annealing. The flow stress shows little dependence on the film texture in the as-deposited state. However, annealing influences the flow stress of confined Cu films significantly. The implications on strain gradient plasticity models are discussed.
Anonymity is a security property of paramount importance, as we move steadily towards a wired, online community. Its import touches upon subjects as different as eGovernance, eBusiness and eLeisure, as well as personal freedom of speech in authoritarian societies. Trust metrics are used in anonymity networks to support and enhance reliability in the absence of verifiable identities, and a variety of security attacks currently focus on degrading a user's trustworthiness in the eyes of the other users.