We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Introduction: Late-life depression (LLD) is associated with cognitive deficit with risk of future dementia. By examining the entropy of the spontaneous brain activity, we aimed to understand the neural mechanism pertaining to cognitive decline in LLD.
Methods: We collected MRI scans in older adults with LLD (n = 32), mild cognitive impairment [MCI (n = 25)] and normal cognitive function [NC, (n = 47)]. Multiscale entropy analysis (MSE) was applied to resting-state fMRI data. Under the scale factor (tau) 1 and 2, reliable separation of fMRI data and noise was achieved. We calculated the brain entropy in 90 brain regions based on automated anatomical atlas (AAL). Due to exploratory nature of this study, we presented data of group-wise comparison in brain entropy between LLD vs. NC, MCI vs. NC, and LLD and MCD with a p-value below 0.001.
Results: The mean Mini-Mental State Examination (MMSE) score of LLD and MCI was 27.9 and 25.6. Under tau 2, we found higher brain entropy of LLD in left globus pallidus than MCI (p = 0.002) and NC (p = 0,009). Higher brain entropy of LLD than NC was also found in left frontal superior gyrus, left middle superior gyrus, left amygdala and left inferior parietal gyrus. The only brain region with higher brain entropy in MCI than control was left posterior cingulum (p-value = 0.015). Under tau 1, higher brain entropy was also found in LLD than in MCI in right orbital part of medial frontal gyrus and left globus pallidus (p-value = 0.007 and 0.005).
Conclusions: Our result is consistent with prior hypothesis where higher brain entropy was found during early aging process as compensation. We found such phenomenon particular in left globus pallidus in LLD, which could be served as a discriminative brain region. Being a key region in reward system, we hypothesis such region may be associated with apathy and with unique pathway of cognitive decline in LLD. We will undertake subsequent analysis longitudinally in this cohort
The delay-shift of the pre-pulse may mislead the determination of its origination and cause problems for the temporal contrast improvement of high-peak-power lasers, especially when the corresponding post-pulse is beyond the time window of the measurement device. In this work, an empirical formula is proposed to predict the delay-shift of pre-pulses for the first time. The empirical formula shows that the delay-shift is proportional to the square of the post-pulse’s initial delay, and also the ratio of the third-order dispersion to the group delay dispersion’s square, which intuitively reveals the main cause for the delay-shift and may provide a convenient routing for identifying the real sources of pre-pulses in both chirped-pulse amplification (CPA) and optical parametric chirped-pulse amplification (OPCPA) systems. The empirical formula agrees well with the experimental results both in the CPA and the OPCPA systems. Besides, a numerical simulation is also carried out to further verify the empirical formula.
Choline and betaine are important in the body, from cell membrane components to methyl donors. We aimed to investigate trends in dietary intake and food sources of total choline, individual choline forms and betaine in Chinese adults using data from the China Health and Nutrition Survey (CHNS) 1991–2011, a prospective cohort with a multistage, random cluster design. Dietary intake was estimated using three consecutive 24-h dietary recalls in combination with a household food inventory. Linear mixed-effect models were constructed using R software. A total of 11 188 men and 12 279 women aged 18 years or older were included. Between 1991 and 2011, total choline intake increased from 219·3 (95 % CI 215·1, 223·4) mg/d to 269·0 (95 % CI 265·6, 272·5) mg/d in men and from 195·6 (95 % CI 191·8, 199·4) mg/d to 240·4 (95 % CI 237·4, 243·5) mg/d in women (both P-trends < 0·001). Phosphatidylcholine was the major form of dietary choline, and its contribution to total choline increased from 46·9 % in 1991 to 58·8 % in 2011. Cereals were the primary food source of total choline before 2000, while eggs had ranked at the top since 2004. Dietary betaine intake was relatively steady over time with a range of 134·0–151·5 mg/d in men (P-trend < 0·001) and 111·7–125·3 mg/d in women (P-trend > 0·05). Chinese adults experienced a significant increase in dietary intake of choline, particularly phosphatidylcholine during 1991–2011 and animal-derived foods have replaced plant-based foods as the main food sources of choline. Betaine intake remained relatively stable over time. Future efforts should address the health effects of these changes.
Purple nutsedge (Cyperus rotundus L.) is one of the world’s resilient upland weeds, primarily spreading through its tubers. Its emergence in rice (Oryza sativa L.) fields has been increasing, likely due to changing paddy-farming practices. This study aimed to investigate how C. rotundus, an upland weed, can withstand soil flooding and become a problematic weed in rice fields. The first comparative analysis focused on the survival and recovery characteristics of growing and mature tubers of C. rotundus exposed to soil-flooding conditions. Notably, mature tubers exhibited significant survival and recovery abilities in these environments. Based on this observation, further investigation was carried out to explore the morphological structure, nonstructural carbohydrates, and respiratory mechanisms of mature tubers in response to prolonged soil flooding. Over time, the mature tubers did not form aerenchyma but instead gradually accumulated lignified sclerenchymal fibers, with lignin content also increasing. After 90 d, the lignified sclerenchymal fibers and lignin contents were 4.0 and 1.1 times higher than those in the no soil-flooding treatment. Concurrently, soluble sugar content decreased while starch content increased, providing energy storage, and alcohol dehydrogenase activity rose to support anaerobic respiration via alcohol fermentation. These results indicated that mature tubers survived in soil-flooding conditions by adopting a low-oxygen quiescence strategy, which involves morphological adaptations through the development of lignified sclerenchymal fibers, increased starch reserves for energy storage, and enhanced anaerobic respiration. This mechanism likely underpins the flooding tolerance of mature C. rotundus tubers, allowing them to endure unfavorable conditions and subsequently germinate and grow once flooding subsides. This study provides a preliminary explanation of the mechanism by which mature tubers of C. rotundus from the upland areas confer flooding tolerance, shedding light on the reasons behind this weed’s increasing presence in rice fields.
To address the issues of low positioning accuracy and weak robustness of prior visual simultaneous localization and mapping (VSLAM) systems in dynamic environments, a semantic VSLAM (Sem-VSLAM) approach based on deep learning is proposed in this article. The proposed Sem-VSLAM algorithm adds semantic segmentation threads in parallel based on the open-source ORB-SLAM2’s visual odometry. First, while extracting the ORB features from an RGB-D image, the frame image is semantically segmented, and the segmented results are detected and repaired. Then, the feature points of dynamic objects are eliminated by using semantic information and motion consistency detection, and the poses are estimated by using the remaining feature points after the dynamic feature elimination. Finally, a 3D point cloud map is constructed by using tracking information and semantic information. The experiment uses Technical University of Munich public data to show the usefulness of the Sem-VSLAM algorithm. The experimental results show that the Sem-VSLAM algorithm can reduce the absolute trajectory error and relative attitude error of attitude estimation by about 95% compared to the ORB-SLAM2 algorithm and by about 14% compared to the VO-YOLOv5s in a highly dynamic environment and the average time consumption of tracking each frame image reaches 61 ms. It is verified that the Sem-VSLAM algorithm effectively improves the robustness and positioning accuracy in high dynamic environment and owning a satisfying real-time performance. Therefore, the Sem-VSLAM has a better mapping effect in a highly dynamic environment.
The right inferior frontal gyrus (RIFG) is a potential beneficial brain stimulation target for autism. This randomized, double-blind, two-arm, parallel-group, sham-controlled clinical trial assessed the efficacy of intermittent theta burst stimulation (iTBS) over the RIFG in reducing autistic symptoms (NCT04987749).
Methods
Conducted at a single medical center, the trial enrolled 60 intellectually able autistic individuals (aged 8–30 years; 30 active iTBS). The intervention comprised 16 sessions (two stimulations per week for eight weeks) of neuro-navigated iTBS or sham over the RIFG. Fifty-seven participants (28 active) completed the intervention and assessments at Week 8 (the primary endpoint) and follow-up at Week 12.
Results
Autistic symptoms (primary outcome) based on the Social Responsiveness Scale decreased in both groups (significant time effect), but there was no significant difference between groups (null time-by-treatment interaction). Likewise, there was no significant between-group difference in changes in repetitive behaviors and exploratory outcomes of adaptive function and emotion dysregulation. Changes in social cognition (secondary outcome) differed between groups in feeling scores on the Frith-Happe Animations (Week 8, p = 0.026; Week 12, p = 0.025). Post-hoc analysis showed that the active group improved better on this social cognition than the sham group. Dropout rates did not vary between groups; the most common adverse event in both groups was local pain. Notably, our findings would not survive stringent multiple comparison corrections.
Conclusions
Our findings suggest that iTBS over the RIFG is not different from sham in reducing autistic symptoms and emotion dysregulation. Nonetheless, RIFG iTBS may improve social cognition of mentalizing others' feelings in autistic individuals.
Persistent cognitive deficits and functional impairments are associated with bipolar disorder (BD), even during the euthymic phase. The dysfunction of default mode network (DMN) is critical for self-referential and emotional mental processes and is implicated in BD. The current study aims to explore the balance of excitatory and inhibitory neurotransmitters, i.e. glutamate and γ-aminobutyric acid (GABA), in hubs of the DMN during the euthymic patients with BD (euBD).
Method
Thirty-four euBD and 55 healthy controls (HC) were recruited to the study. Using proton magnetic resonance spectroscopy (1H-MRS), glutamate (with PRESS sequence) and GABA levels (with MEGAPRESS sequence) were measured in the medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC) and the posterior cingulate gyrus (PCC). Measured concentrations of excitatory glutamate/glutamine (Glx) and inhibitory GABA were used to calculate the excitatory/inhibitory (E/I) ratio. Executive and attentional functions were respectively assessed using the Wisconsin card-sorting test and continuous performance test.
Results
euBD performed worse on attentional function than controls (p = 0.001). Compared to controls, euBD had higher E/I ratios in the PCC (p = 0.023), mainly driven by a higher Glx level in the PCC of euBD (p = 0.002). Only in the BD group, a marginally significant negative association between the mPFC E/I ratio (Glx/GABA) and executive function was observed (p = 0.068).
Conclusions
Disturbed E/I balance, particularly elevated Glx/GABA ratio in PCC is observed in euBD. The E/I balance in hubs of DMN may serve as potential biomarkers for euBD, which may also contribute to their poorer executive function.
Few previous studies have established Snaith–Hamilton Pleasure Scale (SHAPS) cut-off values using receiver operating characteristic curve analysis and applied these values to compare predictors of anhedonia between clinical and nonclinical groups.
Aims
To determine the optimal cut-off values for the SHAPS and use them to identify predictors of anhedonia in clinical and nonclinical groups in Taiwan.
Method
This cross-sectional and correlational study used convenience sampling to recruit 160 patients from three hospitals and 412 students from two universities in northern Taiwan. Data analysis included receiver operating characteristic curve, univariate and multivariate analyses.
Results
The optimal SHAPS cut-off values were 29.5 and 23.5 for the clinical and nonclinical groups, respectively. Moreover, two-stage analysis revealed that participants in the clinical group who perceived themselves as nondepressed, and participants in the nonclinical group who did not skip classes and whose fathers exhibited higher levels of care and protection were less likely to attain the cut-off values. Conversely, participants in the nonclinical group who reported lower academic satisfaction and were unwilling to seek help from family or friends were more likely to attain the cut-off values.
Conclusions
Our findings highlight the importance of optimal cut-off values in screening for depression risk within clinical and nonclinical groups. Accordingly, the development of comprehensive, individualised programmes to monitor variation trends in SHAPS scores and relevant predictors of anhedonia across different target populations is crucial.
Neuro-therapeutic intervention joins play for older adults with and without cognitive decline in Asia. During the Covid-19 outbreak, older adults report an increased isolation and increased risk for cognitive decline and medical complications than younger populations. It is therefore reasonable to implement creative nonpharmacological interventions to satisfy older adults psycho-social needs while maintaining their cognitive functioning without being burdened with healthcare costs. In this interventional study, a group of 60 older adults aged 60 years old and older participated in sand tray activity for six weeks. Participants were interviewed for their experiences with six sand tray activities under social distance restrictions in Taiwan. Thematic analysis techniques are applied to examine the interviewing data to identify comment themes across participants. The qualitative results show that social connection is the need of older adults during the pandemic, that neuro-therapeutic play satisfies older adults’ emotional needs, and that sand tray activity offers an opportunity for older adults to exercise their brain. Implications are discussed.
A comprehensive direct numerical simulation of electroconvection (EC) turbulence caused by strong unipolar charge injection in a two-dimensional cavity is performed. The EC turbulence has strong fluctuations and intermittency in the closed cavity. Several dominant large-scale structures are found, including two vertical main rolls and a single primary roll. The flow mode significantly influences the charge transport efficiency. A nearly $Ne \sim T^{1/2}$ scaling stage is observed, and the optimal $Ne$ increment is related to the mode with two vertical rolls, while the single roll mode decreases the charge transport efficiency. As the flow strength increases, EC turbulence transitions from an electric force-dominated mode to an inertia-dominated mode. The former utilizes the Coulomb force more effectively and allocates more energy to convection. The vertical mean profiles of charge, electric field and energy budget provide intuitive information on the spatial energy distribution. With the aid of the energy-box technique, a detailed energy transport evolution is illustrated with changing electric Rayleigh numbers. This exploration of EC turbulence can help explain more complicated electrokinetic turbulence mechanisms and the successful utilization of Fourier mode decomposition and energy-box techniques is expected to benefit future EC studies.
This study examines the political dynamics that shape legislators' policy positions on importing US meat into Taiwan during the past decade, focusing on the cases of US beef in 2012 and US pork in 2021. The trade policy surrounding this issue has become politically contentious, involving conflicting national interests and constituency preferences. Legislators face a dilemma, torn between prioritizing the interests of their constituents and aligning with their party's interests. The central argument posits that legislators affiliated with the ruling party are more inclined to advocate for or adjust their stances to support the removal of import bans on American meat, while those associated with the opposition party tend to exhibit a greater reluctance to endorse such a stance. Factors such as the legislators' constituent's interests, district vs party-list affiliations, the urban–rural divide, or education level do not consistently explain legislators' positions on the US meat trade policy. To examine these arguments, this study employs a mixed-method approach, incorporating quantitative analysis and two case studies of individual legislators. The findings of this study offer empirical support for the central proposition.
We conducted a retrospective, analytical cross-sectional and single-centre study that included 190 hospitalised COVID-19 patients in the Fujian Provincial Hospital South Branch between December 2022 and January 2023 to analyse the correlation of viral loads of throat swabs with clinical progression and outcomes. To normalise the Ct value as quantification of viral loads, we used RNase P gene as internal control gene and subtracted the Ct value of SARS-CoV-2 N gene from the Ct value of RNase P gene, termed △Ct. Most patients were discharged (84.2%), and only 10 (5.6%) individuals who had a lower △Ct value died. The initial △Ct value of participants was also significantly correlated with some abnormal laboratory characteristics, and the duration time of SARS-CoV-2 was longer in patients with severe symptoms and a lower △Ct value at admission. Our study suggested that the △Ct value may be used as a predictor of disease progression and outcomes in hospitalised COVID-19 patients.
One famous debate in contemporary epistemology considers whether there is always one unique, epistemically rational way to respond to a given body of evidence. Generally speaking, answering “yes” to this question makes one a proponent of the Uniqueness thesis, while those who answer “no” are called “permissivists”. Another influential recent debate concerns whether non-truth-related factors can be the basis of epistemic justification, knowledge, or rational belief. Traditional theories answer “no”, and are therefore considered “purists”. However, more recently many theorists have argued to the contrary, claiming that impurist factors, such as practical stakes, can sometimes encroach or even override truth-related considerations. This paper bridges the two debates by presenting and defending what I call “Impurist Permissivism”. I support Impurist Permissivism by showing how it can resist Roger White's famous Argument from Arbitrariness (2005).
Breast cancer is a high-risk disease with a high mortality rate among women. Chemotherapy plays an important role in the treatment of breast cancer. However, chemotherapy eventually results in tumours that are resistant to drugs. In recent years, many studies have revealed that the activation of Wnt/β-catenin signalling is crucial for the emergence and growth of breast tumours as well as the development of drug resistance. Additionally, drugs that target this pathway can reverse drug resistance in breast cancer therapy. Traditional Chinese medicine has the properties of multi-target and tenderness. Therefore, integrating traditional Chinese medicine and modern medicine into chemotherapy provides a new strategy for reversing the drug resistance of breast tumours. This paper mainly reviews the possible mechanism of Wnt/β-catenin in promoting the process of breast tumour drug resistance, and the progress of alkaloids extracted from traditional Chinese medicine in the targeting of this pathway in order to reverse the drug resistance of breast cancer.
In this work, a confined-doped fiber with the core/inner-cladding diameter of 40/250 μm and a relative doping ratio of 0.75 is fabricated through a modified chemical vapor deposition method combined with the chelate gas deposition technique, and subsequently applied in a tandem-pumped fiber amplifier for high-power operation and transverse mode instability (TMI) mitigation. Notably, the impacts of the seed laser power and mode purity are preliminarily investigated through comparative experiments. It is found that the TMI threshold could be significantly affected by the seed laser mode purity. The possible mechanism behind this phenomenon is proposed and revealed through comprehensive comparative experiments and theoretical analysis. Finally, a maximum output power of 7.49 kW is obtained with the beam quality factor of approximately 1.83, which is the highest output power ever reported in a forward tandem-pumped confined-doped fiber amplifier. This work could provide a good reference and practical solution to improve the TMI threshold and realize high-power high-brightness fiber lasers.
In this study, we report the first complete mitochondrial genome of the tapeworm Nippotaenia mogurndae in the order Nippotaeniidea Yamaguti, 1939. This mitogenome, which is 14,307 base pairs (bp) long with an A + T content of 72.2%, consists of 12 protein-coding genes, 22 transfer RNA (tRNA) genes, two rRNA genes, and two non-coding regions. Most tRNAs have a conventional cloverleaf structure, but trnS1 and trnR lack dihydrouridine arms of tRNA. The two largest non-coding regions, NCR1 (220 bp) and NCR2 (817 bp), are located between trnY and trnS2 and between nad5 and trnG, respectively. Phylogenetic analyses of mitogenomic data indicate that N. mogurndae is closely related to tapeworms in the order Cyclophyllidea.
We investigated the effects of botulinum toxin on gait in Parkinson’s disease (PD) patients with foot dystonia. Six patients underwent onabotulinum toxin A injection and were assessed by Burke–Fahn–Marsden Dystonia Rating Scale (BFMDRS), visual analog scale (VAS) of pain, Timed Up and Go (TUG), Berg Balance Test (BBT), and 3D gait analysis at baseline, 1 month, and 3 months. BFMDRS (p = 0.002), VAS (p = 0.024), TUG (p = 0.028), and BBT (p = 0.034) were improved. Foot pressures at Toe 1 (p = 0.028) and Midfoot (p = 0.018) were reduced, indicating botulinum toxin’s effects in alleviating the dystonia severity and pain and improving foot pressures during walking in PD.
The aim of this study was to explore the impact of polymorphism of PD-1 gene and its interaction with tea drinking on susceptibility to tuberculosis (TB). A total of 503 patients with TB and 494 controls were enrolled in this case–control study. Three single-nucleotide polymorphisms of PD-1 (rs7568402, rs2227982 and rs36084323) were genotyped and unconditional logistic regression analysis was used to identify the association between PD-1 polymorphism and TB, while marginal structural linear odds models were used to estimate the interactions. Genotypes GA (OR 1.434), AA (OR 1.891) and GA + AA (OR 1.493) at rs7568402 were more prevalent in the TB patients than in the controls (P < 0.05). The relative excess risk of interaction (RERI) between rs7568402 of PD-1 genes and tea drinking was −0.3856 (95% confidence interval −0.7920 to −0.0209, P < 0.05), which showed a negative interaction. However, the RERIs between tea drinking and both rs2227982 and rs36084323 of PD-1 genes were not statistically significant. Our data demonstrate that rs7568402 of PD-1 genes was associated with susceptibility to TB, and there was a significant negative interaction between rs7568402 and tea drinking. Therefore, preventive measures through promoting the consumption of tea should be emphasised in the high-risk populations.
Various foods are associated with or protect against type 2 diabetes mellitus (T2DM). This study was to examine the associations of foods and food patterns with the risk of T2DM in South China.
Design:
Case–control study.
Setting:
The dietary patterns were identified by a principal components factor analysis. Univariable and multivariable conditional logistic regression analyses were used to analyse the associations between food groups and dietary patterns and the risk of T2DM.
Participants:
A total of 384 patients with T2DM and 768 controls.
Results:
After adjustment for total energy intake, the standard intake of grains (228·3 ± 71·9 v. 238·8 ± 73·1 g/d, P = 0·025) and fruits (109 ± 90 v. 145 ± 108 g/d, P < 0·001) were lower in T2DM than in controls. Four dietary patterns were identified: (1) high light-coloured vegetables and low grains, (2) high fruits, (3) high red meat and low grains and (4) high dark-coloured vegetable. After adjustment for covariables, multivariable conditional logistic regression analyses showed significant dose-dependent inverse associations between total fruit intake, whole grains intake and the score of the high-fruit dietary pattern (all Pfor trend < 0·001) and the risk of T2DM. The adjusted OR (95 % CI) for T2DM comparing the extreme quartiles were 0·46 (0·29, 0·76) for total fruits, 0·48(0·31, 0·77) for whole grains and 0·42 (0·26, 0·68) for the high-fruit dietary pattern, respectively. Similar associations were observed for all subgroups of fruits (dark-colour and light-colour).
Conclusion:
In South China, a diet rich in fruit and whole grains is associated with lower risk of T2DM.
A one-dimensional steady-state model for stimulated Raman backscatter (SRS) and stimulated Brillouin backscatter (SBS) processes in laser-irradiated plasmas is presented. Based on a novel “predictor-corrector” method, the model is capable to deal with broadband scattered light and inhomogeneous plasmas, exhibiting robustness and high efficiency. Influences of the electron density and temperature on the linear gains of both SRS and SBS are investigated, which indicates that the SRS gain is more sensitive to the electron density and temperature than that of the SBS. For the low-density case, the SBS dominates the scattering process, while the SRS exhibits much higher reflectivity in the high-density case. The nonlinear saturation mechanisms and competition between SRS and SBS are included in our model by a phenomenological method. The typical anti-correlation between SRS and SBS versus electron density is reproduced in the model. Calculations of the reflectivities are qualitatively in agreement with the typical results of experiments and simulations.