We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Lactylation, a new epigenetic modification, is an important way in which lactate exerts physiological functions. There is a close relationship between increased lactylations caused by lactate and glycolysis, which can interact and play a role in disease through lactate as an intermediate mediator. Current research on lactylations has focused on histone lactylation, but non-histone lactylation also has greater research potential. Due to the ubiquity of lactate modifications in mammalian cells, an increasing number of studies have found that lactate modifications play important roles in tumour cell metabolism, gene transcription and immunity.
Methods
A systematic literature search was carried out using search key terms and synonyms. Full-paper screening was performed based on specific inclusion and exclusion criteria.
Results
Many literatures have reported that the lactylation of protein plays an important role in human diseases and is involved in the occurrence and development of human diseases.
Conclusions
This article summary the correlation between lactylation and glycolysis, histones and non-histone proteins; the relationship between lactonation modifications and tumour development; and the current existence of lactylation-related inhibitors, with a view to provide new basic research ideas and clinical therapeutic tools for lactylation-related diseases.
We reported on an efficient high-power continuous-wave laser operation on the 3H4 → 3H5 transition of Tm3+ ions in a diffusion-bonded composite YVO4/Tm:GdVO4 crystal. Pumped by a laser diode at 794 nm, a maximum output power of 7.5 W was obtained from a YVO4/Tm:GdVO4 laser at 2.29 μm, corresponding to a slope efficiency of 40.3% and exceeding the Stokes limit. To the best of our knowledge, this result represents the maximum power ever achieved from a Tm laser at 2.3 μm.
The internal flow within an evaporating sessile droplet has intriguing fluid mechanics important to various microfluidics applications. In the present study, a phenomenon is observed through numerical methods wherein the buoyancy-driven flow structure inside a droplet on a non-wetting substrate transitions from an axisymmetric toroidal vortex flow to a non-axisymmetric single vortex flow with increase in the substrate temperature. As the axisymmetric nature of the droplet flow field and evaporation characteristics are broken, the internal velocity accelerates significantly. The transition, which is attributed to a flow instability inside the droplet, is more prone to occur as the droplet volume or the contact angle increases. The onset of the flow transition is analysed as the amplification of a small perturbation, thereby establishing a correlation between the flow instability and the Rayleigh number (Ra). Specifically, when Ra exceeds some critical value, the onset of the flow transition is observed, which explains the effects of substrate temperature and droplet volume on the internal flow. Next, the influence of the droplet contact angle on the critical Ra was investigated, and the underlying reasons were analysed. Finally, we discuss the heat transfer efficiency within the droplet and analyse why the internal flow tends to transition to a non-axisymmetric flow pattern from an energy minimization perspective.
Chinese characters hold great potential to help inform and enrich psycholinguistic research on lexical ambiguity as a large portion of them are ambiguous in nature with meaning varying from context to context. This report presents a psycholinguistic database that contains over 2000 characters with normative measures for meaning dominance and meaning balance, that is, the relative frequency of each meaning associated with a target character and the degree of balance across the meanings of the character. The measurement process takes advantage of the fact that, in Chinese, generating words containing a target character is the most convenient way to specify and disambiguate character meanings. Character meanings stored in ordinary people’s mental lexicon are identified based on the words, along with a small portion of meaning descriptions, listed by over 900 native speakers. The measures of meaning dominance and meaning balance for the characters are derived from computing the relative frequencies of the meanings. Potential research and practical applications of the database, as a valuable tool, to enhance our understanding of the acquisition, representation, and processing of ambiguous lexical items are discussed.
This paper proposes a novel two-layer framework based on conflict-based search and regional divisions to improve the efficiency of multi-robot path planning. The high-level layer targets the reduction of conflicts and deadlocks, while the low-level layer is responsible for actual path planning. Distinct from previous dual-level search frameworks, the novelties of this work are (1) subdivision of planning regions for each robot to decrease the number of conflicts encountered during planning; (2) consideration of the number of robots in the region during planning in the node expansion stage of A*, and (3) formal proof demonstrating the nonzero probability of the proposed method in obtaining a solution, along with providing the upper bound of the solution in a special case. Experimental comparisons with Enhanced Conflict-Based Search demonstrate that the proposed method not only reduces the number of conflicts but also achieves a computation time reduction of over 30%.
Few previous studies have investigated how socioeconomic differences in labour market exit have changed after restrictions in social insurance policies. The aim of this register-based study is to investigate how early labour market exit pathways among older men and women with different levels of education changed after major restrictive social insurance and retirement policy reforms in Sweden. Cohort 1 (pre-reform) consisted of individuals who were 60 or 61 years old in 2005 (N = 186,145) and Cohort 2 (post-reform) consisted of individuals who were 60 or 61 years old in 2012 (N = 176,216). Educational differences in four labour market exit pathways were investigated using Cox proportional hazards regression; the exit pathways were disability pension, early old-age pension with and without income respectively, and no income for two consecutive years. As expected, exits through disability pension were rarer in Cohort 2. Lower education was also more strongly associated with disability pension in Cohort 2. Parallel to this, lower education showed a stronger association with both early old-age pension types in Cohort 2. Additionally, a tendency towards a relatively higher likelihood of earning no income was seen among the less educated. Increases in inequalities tended to be greater for women. Our results indicate that educational inequalities in labour market exit have grown significantly after restrictions in social insurance and changes in retirement policies, which can have negative financial repercussions for those already in a vulnerable position. These results indicate that careful analyses of effects on disparities are needed before making major changes in welfare systems.
Individuals with schizophrenia face high mortality risks. The effects of lipid-modifying agents on this risk remain understudied.
Aim
This study was conducted to investigate the effects of lipid-modifying agents on mortality risk in people with schizophrenia.
Method
This nationwide cohort study collected the data of people with schizophrenia from Taiwan's National Health Insurance Research Database for the period between 1 January 2001 and 31 December 2019. Multivariable Cox proportional hazards regression with a time-dependent model was used to estimate the hazard ratio for mortality associated with each lipid-modifying agent.
Results
This study included 110 300 people with schizophrenia. Of them, 22 528 died (19 754 from natural causes and 1606 from suicide) during the study period, as confirmed using data from Taiwan's national mortality database. The use of lipid-modifying agents was associated with reduced risks of all-cause (adjusted hazard ratio [aHR]:0.37; P < 0.001) and natural (aHR:0.37; P < 0.001) mortality during a 5-year period. Among the lipid-modifying agents, statins and fibrates were associated with reduced risks of all-cause mortality (aHRs:0.37 and 0.39, respectively; P < 0.001 for both) and natural mortality (aHRs: 0.37 and 0.42, respectively; P < 0.001 for both). Notably, although our univariate analysis indicated an association between the use of lipid-modifying agents and a reduced risk of suicide mortality, the multivariate analysis revealed no significant association.
Conclusions
Lipid-modifying agents, particularly statins and fibrates, reduce the risk of mortality in people with schizophrenia. Appropriate use of lipid-modifying agents may bridge the mortality gap between these individuals and the general population.
Although behavioral mechanisms in the association among depression, anxiety, and cancer are plausible, few studies have empirically studied mediation by health behaviors. We aimed to examine the mediating role of several health behaviors in the associations among depression, anxiety, and the incidence of various cancer types (overall, breast, prostate, lung, colorectal, smoking-related, and alcohol-related cancers).
Methods
Two-stage individual participant data meta-analyses were performed based on 18 cohorts within the Psychosocial Factors and Cancer Incidence consortium that had a measure of depression or anxiety (N = 319 613, cancer incidence = 25 803). Health behaviors included smoking, physical inactivity, alcohol use, body mass index (BMI), sedentary behavior, and sleep duration and quality. In stage one, path-specific regression estimates were obtained in each cohort. In stage two, cohort-specific estimates were pooled using random-effects multivariate meta-analysis, and natural indirect effects (i.e. mediating effects) were calculated as hazard ratios (HRs).
Results
Smoking (HRs range 1.04–1.10) and physical inactivity (HRs range 1.01–1.02) significantly mediated the associations among depression, anxiety, and lung cancer. Smoking was also a mediator for smoking-related cancers (HRs range 1.03–1.06). There was mediation by health behaviors, especially smoking, physical inactivity, alcohol use, and a higher BMI, in the associations among depression, anxiety, and overall cancer or other types of cancer, but effects were small (HRs generally below 1.01).
Conclusions
Smoking constitutes a mediating pathway linking depression and anxiety to lung cancer and smoking-related cancers. Our findings underline the importance of smoking cessation interventions for persons with depression or anxiety.
A well-known method of studying iconic words is through the collection of subjective ratings. We collected such ratings regarding familiarity, iconicity, imagery/imageability, concreteness, sensory experience rating (SER), valence and arousal for Mandarin ABB words. This is a type of phrasal compound consisting of a prosaic syllable A and a reduplicated BB part, resulting in a vivid phrasal compound, for example, wù-mángmáng 雾茫茫 ‘completely foggy’. The correlations between the newly collected ABB ratings are contrasted with two other sets of prosaic word ratings, demonstrating that variables that characterize ABB words in an absolute sense may not play a distinctive role when contrasted with other types of words. Next, we provide another angle for looking at ABB words, by investigating to what degree rating data converges with corpus data. By far, the variable that characterizes ABB items consistently throughout these case studies is their high score for imageability, showing that they are indeed rightfully characterized as vivid. Methodologically, we show that it pays off to not take rating data at face value but to contrast it with other comparable datasets of a different phenomenon or data about the same phenomenon compiled in an ontologically different manner.
Adsorption desulfurization is a potential new method for deep desulfurization of fuel oil. The development of adsorbents with high adsorption capacity and selectivity is the core of deep adsorption desulfurization. The adsorption behavior of thiophene in MCM-41 mesoporous materials modified by various metal ions was studied in order to understand the adsorption desulfurization process of molecular sieves. The Fe-, Co-, and Zn-modified MCM-41 materials were prepared using a one-step in situ hydrothermal synthesis method. The modified MCM-41 molecular sieves maintained the mesoporous structure, and the metal ions had specific dispersion on the surface of the molecular sieves. Adsorption of thiophene on the surfaces of molecular sieves had both physical and chemical characteristics. The adsorption desulfurization performance of the modified molecular sieve was superior to that of the pure silica molecular sieve. In the simulated gasoline with sulfur content of 220 μg/g, when the amount of adsorbent used was 100 mg, the adsorptive desulfurization performance tended to be in equilibrium, and the optimum adsorption temperature was 30°C. Fe-MCM-41 and MCM-41 molecular sieves reached adsorption equilibrium after ~60 min, but the desulfurization rate of Co-MCM-41 and Zn-MCM-41 still increased slightly. The kinetic simulation results indicated that the pseudo-second-order kinetics adsorption model described well the adsorption process of thiophene on molecular sieves. The molecular sieve Fe-MCM-41 had the best desulfurization performance with an equilibrium adsorption capacity of 14.02 mg/g and the desulfurization rate was ~90%.
Water droplets containing the SARS-CoV-2 virus, responsible for coronavirus 2019 transmission, were introduced into a controlled-temperature and -humidity chamber. The SARS-CoV-2 virus with green fluorescent protein tag in droplets was used to infect Caco-2 cells, with viability assessed through flow cytometry and microscopic counting. Whereas temperature fluctuations within typical indoor ranges (20°C–30°C) had minimal impact, we observed a notable decrease in infection rate as the surrounding air’s relative humidity increased. By investigating humidity levels between 20% and 70%, we identified a threshold of ≥40% relative humidity as most effective in diminishing SARS-CoV-2 infectivity. We also found that damage of the viral proteins under high relative humidity may be responsible for the decrease in their activity. This outcome supports previous research demonstrating a rise in the concentration of reactive oxygen species within water droplets with elevated relative humidity.
Schistosomiasis, a parasite infectious disease caused by Schistosoma japonicum, often leads to egg granuloma and fibrosis due to the inflammatory reaction triggered by egg antigens released in the host liver. This study focuses on the role of the egg antigens CP1412 protein of S. japonicum (SjCP1412) with RNase activity in promoting liver fibrosis. In this study, the recombinant egg ribonuclease SjCP1412, which had RNase activity, was successfully prepared. By analysing the serum of the population, it has been proven that the anti-SjCP1412 IgG in the serum of patients with advanced schistosomiasis was moderately correlated with liver fibrosis, and SjCP1412 may be an important antigen associated with liver fibrosis in schistosomiasis. In vitro, the rSjCP1412 protein induced the human liver cancer cell line Hep G2 and liver sinusoidal endothelial cells apoptosis and necrosis and the release of proinflammatory damage-associated molecular patterns (DAMPs). In mice infected with schistosomes, rSjCP1412 immunization or antibody neutralization of SjCP1412 activity significantly reduced cell apoptosis and necroptosis in liver tissue, thereby reducing inflammation and liver fibrosis. In summary, the SjCP1412 protein plays a crucial role in promoting liver fibrosis during schistosomiasis through mediating the liver cells apoptosis and necroptosis to release DAMPs inducing an inflammatory reaction. Blocking SjCP1412 activity could inhibit its proapoptotic and necrotic effects and alleviate hepatic fibrosis. These findings suggest that SjCP1412 may be served as a promising drug target for managing liver fibrosis in schistosomiasis japonica.
The objective of this study was to understand and measure epigenetic changes associated with the occurrence of CHDs by utilizing the discordant monozygotic twin model. A unique set of monozygotic twins discordant for double-outlet right ventricles (DORVs) was used for this multiomics study. The cardiac and muscle tissue samples from the twins were subjected to whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and liquid chromatography-tandem mass spectrometry analysis. Sporadic DORV cases and control fetuses were used for validation. Global hypomethylation status was observed in heart tissue samples from the affected twins. Among 36,228 differentially methylated regions (DMRs), 1097 DMRs involving 1039 genes were located in promoter regions. A total of 419 genes, and lncRNA–mRNA pairs involved 30 genes, and 62 proteins were significantly differentially expressed. Multiple omics integrative analysis revealed that five genes, including BGN, COL1A1, COL3A1, FBLN5, and FLAN, and three pathways, including ECM-receptor interaction, focal adhesion and TGF-β signaling pathway, exhibited differences at all three levels. This study demonstrates a multiomics profile of discordant twins and explores the possible mechanism of DORV development. Global hypomethylation might be associated with the risk of CHDs. Specific genes and specific pathways, particularly those involving ECM–receptor interaction, focal adhesion and TGF–β signaling, might be involved in the occurrence of CHDs.
To evaluate the mental health of paediatric cochlear implant users and analyse the relationship between six dimensions (movements, cognitive ability, emotion and will, sociality, living habits and language) and hearing and speech rehabilitation.
Methods
Eighty-two cochlear implant users were assessed using the Mental Health Survey Questionnaire. Age at implantation, time of implant use and listening modes were investigated. Categories of Auditory Performance and the Speech Intelligibility Rating Scale were used to score hearing and speech abilities.
Results
More recipients scored lower in cognitive ability and language. Age at implantation was statistically significant (p < 0.05) for movements, cognitive ability, emotion and will, and language. The time of implant usage and listening mode indicated statistical significance (p < 0.05) in cognitive ability, sociality and language.
Conclusion
Timely attention should be paid to the mental health of paediatric cochlear implant users, and corresponding psychological interventions should be implemented to make personalised rehabilitation plans.
This paper presents an optimization method for pattern synthesis of distorted phased array antenna with unsteady surface deformation considering the dynamic range ratio (DRR). In the synthesis approach, different array deformations under unsteady mechanical loads are considered, and the distorted distribution of array elements is calculated after solving the mechanical deformation model. Then, optimize the excitation coefficients of each array element including amplitude and phase with DRR control so as to recover a high-quality pattern from a deteriorated pattern caused by the unsteady deformations. The optimization objective is to minimize the peak sidelobe level, which is synthesized by using a gradient-based algorithm. The optimized excitations can be used as the initial excitation, and the corresponding phase excitations can be derived according to the different deformations.
Multigrain/polydispersity has a significant impact on turbidity current (TC). Despite the fact that several researches have looked into this effect, the impact of the fluid–particle interactions is not fully understood. Motivated by this, we employ the Eulerian–Lagrangian computational fluid dynamics–discrete element method model to investigate the dynamics of the bidisperse lock-exchange TC. Results show that, because the coarse particles will settle faster and stop moving forward, the two phases of bidisperse transport and fine component transport can be distinguished in the evolution of the bidisperse TC. During the bidisperse transport stage, the upper interface of each component is primarily determined by their own settling and transport characteristics and does not strongly depend on the relative fine particle volume fraction $\phi _F$. Fine particles are primarily responsible for the vortical structures near the upper interface of the TC head, and the increase of $\phi _F$ promotes their streamwise development. In comparison, fragmented vortical coherent structures are closely related to the presence of coarse particles, which can be seen in the lower layers. Bidisperse segregation alters the collision process between dispersed phases, which differs from monodisperse TC. The collisions and segregation-induced flow establish interconnections between the two dispersed phases. In the latter stage, the transport of fine particles is inhibited by both the lift force and the contact force produced by the collision with the deposited materials. As $\phi _F$ rises, the negative contact force weakens, and its change is essentially balanced by the rise in negative lift force.
The western Mongolian Lake Zone was a Neoproterozoic to early Paleozoic volcanic arc where tuffs, lavas, fossiliferous siliciclastics, and carbonates accumulated during the early Cambrian. An uppermost Cambrian Series 2 (upper Stage 4) trilobite assemblage is described here from the Burgasutay Formation representing a continuous lower Cambrian succession at the Seer Ridge of the Great Lake Depression. The new assemblage is dominated by dorypygids and consists of 13 trilobite genera belonging to nine families including Catinouyia heyunensis new species. These fossils comprise the youngest and richest lower Cambrian trilobite assemblage in Mongolia. The composition of the Lake Zone fauna suggests its biogeographic affinity with the Siberian Platform and Altay-Sayan Foldbelt, but the presence of inouyiids also implies a connection of this region with East Gondwana.
The sedimentation of two spherical solid objects in a viscous fluid has been extensively investigated and well understood. However, a pair of flat disks (in three dimensions) settling in the fluid shows more complex hydrodynamic behaviour. The present work aims to improve the understanding of this phenomenon by performing direct numerical simulation and physical experiments. The present results show that the sedimentation processes are significantly influenced by disk shape, characterized by a dimensionless moment of inertia I*, and Reynolds number Re of the leading disk. For the flatter disks with smaller I*, steady falling with enduring contact transits to periodic swinging with intermittent contacts as Re increases. The disks with larger I* tend to fall in a drafting-kissing-tumbling mode at low Re and to remain separated at high Re. Based on I* and Re, a phase diagram is created to classify the two-disk falling into ten distinctive patterns. The planar motion or three-dimensional motion of the disks is determined primarily by Re. Turbulent disturbance flows at a high Re contribute to the chaotic three-dimensional rotation of the disks. The chance for the two disks to contact is increased when I* and Re are reduced.
The current study aims to confirm the positive effects of dietary nano-Se on nutrients deposition and muscle fibre formation in grass carp fed with high-fat diet (HFD) before overwintering and to reveal its possible molecular mechanism. The lipid deposition, protein synthesis and muscle fibre formation in grass carp fed with regular diet (RD), HFD or HFD supplemented with nano-Se (0·3 or 0·6 mg/kg) for 60 d were tested. Results show that nano-Se significantly reduced lipid content, dripping loss and fibre diameter (P < 0·05), but increased protein content, post-mortem pH24 h and muscle fibre density (P < 0·05) in muscle of grass carp fed with HFD. Notably, dietary nano-Se decreased lipid deposition in the muscle by regulating amp-activated protein kinase activity and increased protein synthesis and fibre formation in muscle by activating target of rapamycin and myogenic determining factors pathways. In summary, dietary nano-Se can regulate the nutrients deposition and muscle fibre formation in grass carp fed with HFD, which exhibit potential benefit for improving flesh quality of grass carp fed with HFD.