We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The successful colonization of invasive plants (IPs) may be facilitated by their nutrient release during decomposition, which alters soil physicochemical properties, enzyme activities, microbial metabolic processes and the diversity of soil microorganisms. This study aimed to examine the effects of co-decomposition of four Asteraceae IPs (Conyza canadensis, Conyza sumatrensis, Erigeron annuus and Solidago canadensis) along a gradient of invasion and a native plant (Pterocypsela laciniata) on decomposition rate, soil physicochemical properties, soil enzyme activities and the diversity of soil bacterial communities (SBCs). Leaves of C. canadensis with heavy invasion and S. canadensis with light and heavy invasion decomposed more slowly than P. laciniata. Leaves of C. canadensis with full invasion decomposed more rapidly than P. laciniata. Pterocypsela laciniata and C. sumatrensis had synergistic effects on each other’s decomposition, whereas P. laciniata and S. canadensis displayed an antagonistic effect. Decomposition of the four IPs increased soil microbial carbon content but reduced soil fluorescein diacetate (FDA) hydrolase activity compared to P. laciniata. Thus, invasion degree and species identity of IPs modulate the effects of the four IPs on the decomposition rate, mixed-effect intensity of co-decomposition, soil microbial carbon content, soil FDA hydrolase activity and SBC structure.
Adolescence is a pivotal stage for brain development and a critical window for the emergence and transition of self-injury thoughts and behaviours (SITBs). However, the genetic and neurobiological mechanisms underlying SITBs transition during this developmental period are poorly understood.
Aims
This study investigates associations among genetic predispositions, brain abnormalities and SITBs transition during adolescence, and identifies potential neurobiological and clinical mediators of genetic effects.
Method
This national retrospective cohort study analysed 5-year longitudinal data from the Adolescent Brain and Cognitive DevelopmentSM Study® (N = 11 868 children aged 9–10 years at baseline). Logistic regression models identified genetic susceptibility and neurobiological abnormalities associated with SITBs transition over a 4-year period. Generalised additive models characterised genetic risk trajectories and critical developmental periods. Mediation analyses examined neurobiological and clinical pathways linking genetic susceptibility to SITBs.
Results
Our findings highlight a notable correlation between SITBs transition and genetic susceptibility, including polygenic risk scores for suicide attempt, ever contemplated self-harm and ever self-harm. The analysis indicates that ages 10–15 years may be a critical period during which genetic risk exerts its most pronounced influence. Structural and functional brain imaging detected some alterations, particularly in grey matter volume (GMV) of the left ventral posterior cingulate cortex, alongside disrupted resting-state functional connectivity in the dorsal attention and default mode networks. Mediation analysis suggests that the association between genetic susceptibility and SITBs transition over 4 years may be partially mediated by GMV changes in the left inferior frontal sulcus, altered resting-state connectivity between the auditory and sensorimotor hand networks and the p-factor.
Conclusions
These results may offer insights into integrating genetic, neurobiological and clinical data to enhance the accuracy of suicide risk stratification in adolescents, and inform the development of more nuanced and targeted early intervention strategies.
Entangled vortex filaments are essential to turbulence, serving as coherent structures that govern nonlinear fluid dynamics and support the reconstruction of fluid fields to reveal statistical properties. This study introduces a quantum implicit representation of vortex filaments in turbulence, employing a levelset method that models the filaments as the intersection of the real and imaginary zero iso-surfaces of a complex scalar field. Describing the fluid field via the scalar field offers distinct advantages in capturing complex structures, topological properties and fluid dynamics, while opening new avenues for innovative solutions through quantum computing platforms. The representation is reformulated into an eigenvalue problem for Hermitian matrices, enabling the conversion of velocity fields into complex scalar fields that embed the vortex filaments. The resulting optimisation is addressed using a variational quantum eigensolver, with Pauli operator truncation and deep learning techniques applied to improve efficiency and reduce noise. The proposed quantum framework achieves a near-linear time complexity and a exponential storage reduction while maintaining a balance of accuracy, robustness and versatility, presenting a promising tool for turbulence analysis, vortex dynamics research, and machine learning dataset generation.
The extracellular matrices, such as the haemolymph, in insects are at the centre of most physiological processes and are protected from oxidative stress by the extracellular antioxidant enzymes. In this study, we identified two secreted superoxide dismutase genes (PxSOD3 and PxSOD5) and investigated the oxidative stress induced by chlorpyrifos (CPF) in the aquatic insect Protohermes xanthodes (Megaloptera: Corydalidae). PxSOD3 and PxSOD5 contain the signal peptides at the N-terminus. Structure analysis revealed that PxSOD3 and PxSOD5 contain the conserved CuZn-SOD domain, which is mainly composed of β-sheets and has conserved copper and zinc binding sites. Both PxSOD3 and PxSOD5 are predicted to be soluble proteins located in the extracellular space. After exposure to different concentrations of sublethal CPF, MDA content in P. xanthodes larvae were increased in a dose-dependent manner; SOD and CAT activities were also higher in CPF-treated groups than that in the no CPF control, indicating that sublethal CPF induces oxidative stress in P. xanthodes larvae. Furthermore, PxSOD3 and PxSOD5 expression levels and haemolymph SOD activity in the larvae were downregulated by sublethal CPF at different concentrations. Our results suggest that the PxSOD3 and PxSOD5 are putative extracellular antioxidant enzymes that may play a role in maintaining the oxidative balance in the extracellular space. Sublethal CPF may induce oxidative stress in the extracellular space of P. xanthodes by reducing the gene expression and catalytic activity of extracellular SODs.
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation of the synovial membrane, leading to cartilage destruction and bone erosion. Due to the complex pathogenesis of RA and the limitations of current therapies, increasing research attention has been directed towards novel strategies targeting fibroblast-like synoviocytes (FLS), which are key cellular components of the hyperplastic pannus. Recent studies have highlighted the pivotal role of FLS in the initiation and progression of RA, driven by their tumour-like transformation and the secretion of pro-inflammatory mediators, including cytokines, chemokines and matrix metalloproteinases. The aggressive phenotype of RA-FLS is marked by excessive proliferation, resistance to apoptosis, and enhanced migratory and invasive capacities. Consequently, FLS-targeted therapies represent a promising avenue for the development of next-generation RA treatments. The efficacy of such strategies – particularly those aimed at modulating FLS signalling pathways – has been demonstrated in both preclinical and clinical settings, underscoring their therapeutic potential. This review provides an updated overview of the pathogenic mechanisms and functional roles of FLS in RA, with a focus on critical signalling pathways under investigation, including Janus kinase/signal transducer and activator of transcription (JAK/STAT), mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NF-κB), Notch and interleukin-1 receptor-associated kinase 4 (IRAK4). In addition, we discuss the emerging understanding of FLS-subset-specific contributions to immunometabolism and explore how computational biology is shaping novel targeted therapeutic strategies. A deeper understanding of the molecular and functional heterogeneity of FLS may pave the way for more effective and precise therapeutic interventions in RA.
Variable topological space robots are essential for providing adaptability and flexibility, enabling the robot to adjust its morphology to perform a range of tasks in the unstructured environment of space. However, impact is a common consequence of topology transformation in space robotics, which may lead to irreversible damage, such as the shedding of solid lubrication on joints. Nevertheless, determining the precise force-time relationships of such impacts poses significant challenges, especially when accounting for various connection mechanisms. In this work, a docking strategy that optimizes the manipulator’s joint angle configuration to minimize the impulse when the topology changes is proposed. First, an estimation technique is developed to quantify the impulse generated by topology transformation, employing spatial operator algebra and generalized momentum balance equations. Based on this model, the impulse minimization is modelled as a bilevel optimization problem, which decomposes a complex multipolar problem into two simpler subproblems. Although this optimization model may compromise computational efficiency, it increases the probability of achieving an optimal solution. To address this, a bilevel solution strategy based on a heuristic algorithm is proposed. In this framework, the lower level uses particle swarm optimization to determine the global optimum, while the upper level adopts simulated annealing to enhance computational speed. Finally, simulations are conducted to validate the proposed approach. Results demonstrate that the proposed method substantially reduces impulse.
We present a high-power mid-infrared single-frequency pulsed fiber laser (SFPFL) with a tunable wavelength range from 2712.3 to 2793.2 nm. The single-frequency operation is achieved through a compound cavity design that incorporates a germanium etalon and a diffraction grating, resulting in an exceptionally narrow seed linewidth of approximately 780 kHz. Employing a master oscillator power amplifier configuration, we attain a maximum average output power of 2.6 W at 2789.4 nm, with a pulse repetition rate of 173 kHz, a pulse energy of 15 μJ and a narrow linewidth of approximately 850 kHz. This achievement underscores the potential of the mid-infrared SFPFL system for applications requiring high coherence and high power, such as high-resolution molecular spectroscopy, precision chemical identification and nonlinear frequency conversion.
We aimed to validate in-body bioelectrical impedance analysis (BIA) measures with dual-energy X-ray absorptiometry (DXA) as reference and describe the body composition (BC) profiling of Tibetan adults.
Design:
This cross-sectional study included 855 participants (391 men and 464 women). Correlation and Bland–Altman analyses were performed for method agreement of in-body BIA and DXA. BC were described by obesity and metabolic status.
Setting:
In-body BIA and DXA have not been employed to characterise the BC of the Tibetan population living in the Qinghai–Tibet Plateau.
Participants:
A total of 855 Tibetan adults, including 391 men and 464 women, were enrolled in the study.
Results:
Concordance correlation coefficient for total fat mass (FM) and total lean mass (LM) between in-body BIA and DXA were 0·91 and 0·89. The bias of in-body BIA for percentages of total FM and total LM was 0·91 % (2·46 %) and –1·74 % (–2·80 %) compared with DXA, respectively. Absolute limits of agreement were wider for total FM in obese men and women and for total LM in overweight men than their counterparts. Gradience in the distribution of total and regional FM content was observed across different BMI categories and its combinations with waist circumference and metabolic status.
Conclusions:
In-body BIA and DXA provided overall good agreement at the group level in Tibetan adults, but the agreement was inferior in participants being overweight or obese.
Random effects meta-analysis model is an important tool for integrating results from multiple independent studies. However, the standard model is based on the assumption of normal distributions for both random effects and within-study errors, making it susceptible to outlying studies. Although robust modeling using the t distribution is an appealing idea, the existing work, that explores the use of the t distribution only for random effects, involves complicated numerical integration and numerical optimization. In this article, a novel robust meta-analysis model using the t distribution is proposed (tMeta). The novelty is that the marginal distribution of the effect size in tMeta follows the t distribution, enabling that tMeta can simultaneously accommodate and detect outlying studies in a simple and adaptive manner. A simple and fast EM-type algorithm is developed for maximum likelihood estimation. Due to the mathematical tractability of the t distribution, tMeta frees from numerical integration and allows for efficient optimization. Experiments on real data demonstrate that tMeta is compared favorably with related competitors in situations involving mild outliers. Moreover, in the presence of gross outliers, while related competitors may fail, tMeta continues to perform consistently and robustly.
Adverse childhood experiences (ACEs) have been associated with increased risks of autoimmune diseases. However, data are scarce on the role of specific ACEs as well as the potential mediating role of adverse mental health symptoms in this association.
Methods
A cohort study using the nationwide Icelandic Stress-And-Gene-Analysis (SAGA, 22,423 women) cohort and the UK Biobank (UKB, 86,492 women) was conducted. Participants self-reported on five ACEs. Twelve autoimmune diseases were self-reported in SAGA and identified via hospital records in UKB. Poisson regression was used to assess the cross-sectional association between ACEs and autoimmune diseases in both cohorts. Using longitudinal data on self-reported mental health symptoms in the UKB, we used causal mediation analyses to study potential mediation by depressive, anxiety, and PTSD symptoms in the association between ACEs and autoimmune diseases.
Results
The prevalence of ACEs was 50% in SAGA and 35% in UKB, while the prevalence of autoimmune diseases was 29% (self-reported) and 14% (clinically confirmed), respectively. In both cohorts, ACEs were associated with an increased prevalence ratio (PR) of any studied autoimmune disease in a dose–response manner (PR = 1.10 (95%CI = 1.08–1.12) per ACE), particularly for Sjögrens (PR = 1.34), polymyalgia rheumatica (PR = 1.20), rheumatoid arthritis (PR = 1.14), systemic lupus erythematosus (PR = 1.13), and thyroid disease (PR = 1.11). Sexual abuse and physical and emotional neglect were consistently associated with an elevated prevalence of autoimmune diseases when including all ACEs in the model. Approximately one fourth of the association was mediated through depression, anxiety, and PTSD.
Conclusions
These findings based on two large cohorts indicate a role of ACEs and corresponding mental health distress in autoimmune diseases among adult women.
CEOs who develop strong clan values as a result of exposure to clan culture in early life wish to bring honor to their clan, motivating them to engage in increased CSR activities. We propose that the influence of CEOs' clan values on CSR is subject to contextual boundaries. Specifically, we predict that the positive relationship between CEOs' clan values and CSR results primarily in an improved level of institutional CSR and varies with CEOs' personal attributes such as overseas experience and hometown identity. An analysis of a longitudinal sample of Chinese publicly listed firms for 2010–2019 provides strong support for our predictions. The implications for upper echelons theory and CSR research are discussed.
Precise and efficient grasping detection is vital for robotic arms to execute stable grasping tasks in industrial and household applications. However, existing methods fail to consider refining different scale features and detecting critical regions, resulting in coarse grasping rectangles. To address these issues, we propose a real-time coarse and fine granularity residual attention (CFRA) grasping detection network. First, to enable the network to detect different sizes of objects, we extract and fuse the coarse and fine granularity features. Then, we refine these fused features by introducing a feature refinement module, which enables the network to distinguish between object and background features effectively. Finally, we introduce a residual attention module that handles different shapes of objects adaptively, achieving refined grasping detection. We complete training and testing on both Cornell and Jacquard datasets, achieving detection accuracy of 98.7% and 94.2%, respectively. Moreover, the grasping success rate on the real-world UR3e robot achieves 98%. These results demonstrate the effectiveness and superiority of CFRA.
In order to improve the regional applicability of existing evaporative misting systems, a new evaporative misting system based on photovoltaic/thermal and ventilation heat exchange is proposed for sow farms. Compared to traditional systems, the proposed system can help to improve their regional applicability and reduce their energy consumption. Meanwhile, its simulation model is constructed and the reliability is verified for its core equipment. The maximum error is less than 14.5% for the above models. Through simulation, the optimal regulation variable ranges in the proposed system are determined for mass flow rate of working fluid (MFWF) and misting power by analysing its operating characteristics. The results show that its optimal ranges of MFWF and misting power are 7245–9245 kg/h and 40–45 kW, respectively. The annual performance is further quantified and analysed under different load ratios for the proposed system in Guangzhou. It can be found that the annual exergy loss, heat exchange coefficient and solar energy benefits of the proposed system in Guangzhou are negatively correlated with load ratio, but its annual energy consumption and energy efficiency ratio are positively correlated. Meanwhile, the system performance and benefits are not significantly improved by increasing device investment and sow density when load ratio exceeds 120% in sow farms. The above conclusion can contribute to improving the existing evaporative misting systems in sow farms and guiding the operating regulation of the proposed system.
This study aimed to estimate the nationwide prevalence of cardiometabolic diseases (CMD) among adults with underweight in the US general population. Using data from the National Health and Nutrition Examination Survey (1999–2020), we estimated the age-standardised prevalence of dyslipidemia, hypertension, diabetes, chronic kidney disease, CVD and the presence of zero or at least two CMD. Multivariable Poisson regressions were used to compare CMD prevalence between subgroups, adjusting for age, sex and race/ethnicity. Among the 855 adults with underweight included, the weighted mean age was 40·8 years, with 68·1 % being women and 70·4 % non-Hispanic White. The estimated prevalence rates were 23·4 % for dyslipidemia (95 % CI 19·4 %, 27·5 %), 15·6 % for hypertension (95 % CI 13·3 %, 17·8 %), 2·5 % for diabetes (95 % CI 1·5 %, 3·5 %), 7·9 % for chronic kidney disease (95 % CI 6·9 %, 8·8 %) and 6·1 % for CVD (95 % CI 4·3 %, 7·9 %). The prevalence of having zero and at least two CMD was 50·6 % (95 % CI 44·1 %, 57·0 %) and 12·3 % (95 % CI 8·1 %, 16·4 %), respectively. Non-Hispanic Black adults had significantly higher prevalence of diabetes (adjusted prevalence ratio, 3·35; 95 % CI 1·35, 8·30) compared with non-Hispanic White adults. In conclusion, approximately half of the underweight adults had at least one CMD, and 12·3 % had at least two CMD. Prevention and management of CMD in underweight adults are critical yet neglected public health challenges.
Oncomelania hupensis (O. hupensis), the sole intermediate host of Schistosoma japonicum, greatly influence the prevalence and distribution of schistosomiasis japonica. The distribution area of O. hupensis has remained extensive for numerous years. This study aimed to establish a valid agent-based model of snail density and further explore the environmental conditions suitable for snail breeding. A marshland with O. hupensis was selected as a study site in Dongting Lake Region, and snail surveys were monthly conducted from 2007 to 2016. Combined with the data from historical literature, an agent-based model of snail density was constructed in NetLogo 6.2.0 and validated with the collected survey data. BehaviorSpace was used to identify the optimal ranges of soil temperature, pH, soil water content, and vegetation coverage for snail growth, development and reproduction. An agent-based model of snail density was constructed and showed a strong agreement with the monthly average snail density from the field surveys. As soil temperature increased, the snail density initially rose before declining, reaching its peak at around 21°C. There were similar variation patterns for other environmental factors. The findings from the model suggested that the optimum ranges of soil temperature, pH, soil water content and vegetation coverage were 19°C to 23 °C, 6.4 to 7.6, 42% to 75%, and 70% to 93%, respectively. A valid agent-based model of snail density was constructed, providing more objective information about the optimum ranges of environmental factors for snail growth, development and reproduction.
This study aimed to explore the potential causal association between PUFA and the risk of intrahepatic cholestasis of pregnancy (ICP) using Mendelian randomisation (MR) analysis. A two-sample MR analysis was conducted utilising large-scale European-based genome-wide association studies summary databases. The primary MR analysis was carried out using the inverse variance-weighted (IVW) method, complemented by other methods such as MR-egger, weighted-median and weighted mode. Sensitivity analysis was also performed to validate the robustness of the findings. Results indicated a 31 % reduced risk of ICP for every 1 standard deviation (sd) increase in n-3 fatty acids levels (OR = 0·69, 95 % CI: 0·54, 0·89, P = 0·004) and in the ratio of n-3 fatty acids to total fatty acids (OR = 0·69, 95 % CI: 0·53, 0·91, P = 0·008). Conversely, there was a 51 % increased risk of ICP for every 1 sd increase in the ratio of n-6 fatty acids to n-3 fatty acids (OR = 1·51, 95 % CI: 1·20, 1·91, P < 0·001) and a 138 % increased risk for every 1 sd increase in the ratio of linoleic fatty acids to total fatty acids (OR = 2·38, 95 % CI: 1·55, 3·66, P < 0·001). The findings suggest that n-3 fatty acids may have a protective effect against the risk of ICP, while n-6 fatty acids and linoleic fatty acids could be potential risk factors for ICP. The supplementation of n-3 fatty acids, as opposed to n-6 fatty acids, could be a promising strategy for the prevention and management of ICP.
Artificial sweeteners are generally used and recommended to alternate added sugar for health promotion. However, the health effects of artificial sweeteners remain unclear. In this study, we included 6371 participants from the National Health and Nutrition Examination Survey with artificial sweetener intake records. Logistic regression and Cox regression were applied to explore the associations between artificial sweeteners and risks of cardiometabolic disorders and mortality. Mendelian randomisation was performed to verify the causal associations. We observed that participants with higher consumption of artificial sweeteners were more likely to be female and older and have above medium socio-economic status. After multivariable adjustment, frequent consumers presented the OR (95 % CI) for hypertension (1·52 (1·29, 1·80)), hypercholesterolaemia (1·28 (1·10, 1·50)), diabetes (3·74 (3·06, 4·57)), obesity (1·52 (1·29, 1·80)), congestive heart failure (1·89 (1·35, 2·62)) and heart attack (1·51 (1·10, 2·04)). Mendelian randomisation confirmed the increased risks of hypertension and type 2 diabetes. Moreover, an increased risk of diabetic mortality was identified in participants who had artificial sweeteners ≥ 1 daily (HR = 2·62 (1·46, 4·69), P = 0·001). Higher consumption of artificial sweeteners is associated with increased risks of cardiometabolic disorders and diabetic mortality. These results suggest that using artificial sweeteners as sugar substitutes may not be beneficial.
Modern studies suggest that the upper ocean heat content (OHC) in the tropical Indian Ocean (TIO) is a better qualitative predictor of the Indian summer monsoon rainfall (ISMR). But it is still unknown how the OHC is mechanically linked to ISMR and whether it can be applied to long-term climate changes. By analyzing reanalysis datasets across the 20th century, we illustrate that in contrast to those anomalies associated with stronger ISM westerlies, higher ISMR is accompanied with summer surface high pressure and east wind anomalies from the South China Sea to the Bay of Bengal (BOB), and is loosely related to increased western TIO OHC during decayed phases of positive Indian Ocean dipole (IOD) and of El Niño. Except for 1944–1968 AD, this interannually lagged ISMR response to winter OHC is insignificant, probably suppressed by those simultaneous effects of positive IOD and El Niño on ISMR. In our paleoclimatic simulations, this modern observed lagged response is interrupted by seasonally reversed insolation anomalies at the 23,000-year precessional band. Our sensitivity experiments further prove that, the ISMR can be simultaneously reduced by positive IOD-like summer OHC anomalies both for modern and precessional situations. This damping effect is mainly contributed by the warmer western TIO that triggers anomalous surface high pressure, easterly winds, and drastically reduced rainfall from BOB to Arabian Peninsula, but with slightly increased rainfall in the northern ISM region. And the cooler southeastern TIO will only moderately increase rainfall in the southern ISM region.
The aim was to explore whether the time-lapse imaging system can help day-3 single cleavage embryo transfer to obtain comparative clinical outcomes to day-4 or 5. The data of 1237 patients who underwent single embryo transfer from January 1, 2018, to September 30, 2020, in our reproductive medicine centre were retrospectively analysed. They were divided into the day-3 single cleavage-stage embryo transfer (SCT) group (n = 357), day-4 single morula transfer (SMT) group (n = 129) and day-5 single blastocyst transfer (SBT) group (n = 751) according to the different embryo transfer stage. The clinical and perinatal outcomes of the three groups were analysed and compared. The clinical pregnancy rates of the patients in the day-3 SCT group, day-4 SMT group and day-5 SBT group were 68.07, 70.54 and 72.04%, respectively. The live birth rates were 56.86, 61.24 and 60.99%, respectively. The monozygotic twin (MZT) rate in the day-3 SCT group was significantly lower than that in the day-5 SBT group (P = 0.049). Regarding perinatal outcomes, only the secondary sex ratio had a significant difference (P < 0.05). After age stratification, no improvement was found in the pregnancy outcomes of patients >35 years of age receiving blastocyst transfer. Our findings suggest that for patients with multiple high-quality embryos on day-3, prolonging the culture time can improve the pregnancy outcome to some extent, but it will bring risks. For centres that have established morphodynamic models, day-3 SCT can also achieve an ideal pregnancy outcome and reduce the rate of monozygotic twins and sex ratio.
As the need for collaboration across multiple organizations to deal with complex social issues such as poverty, crime, and public health grows, Public–Private Partnership (PPP) is of increasing importance. However, little is known about when and why private firms engage in such partnerships. Drawing on upper-echelon theory and the information-processing perspective, we highlight the importance of institutional knowledge and information embedded in CEO cross-sector work experience. We argue that such tacit knowledge and information enables CEOs to better identify the potential risks associated with PPPs. Consequently, CEOs with cross-sector work experience tend to be more cautious in participating in such partnerships, especially in developing economies like China, where private actors face greater information incompleteness concerning post-collaboration hazards due to the government's selective disclosure. Moreover, we develop a multi-moderator framework in which regional marketization and political connection alter the main effect by serving as supplementary information channels for private actors. A panel dataset of Chinese private listed firms from 2013 to 2021 provides strong support for our hypotheses. This study contributes to our understanding of the micro-foundation of PPP formation and draws attention to CEOs’ prior career experiences in different organizational forms.