To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce positive correspondences as right $C^*$-modules with left actions given by completely positive maps. Positive correspondences form a semi-category that contains the $C^*$-correspondence (Enchilada) category as a ‘retract’. Kasparov’s KSGNS construction provides a semi-functor from this semi-category onto the $C^*$-correspondence category. The need for left actions by completely positive maps appears naturally when we consider morphisms between Cuntz–Pimsner algebras, and we describe classes of examples arising from projections on $C^*$-correspondences and Fock spaces, as well as examples from conjugation by bi-Hilbertian bimodules of finite index.
In the setting of product systems over group-embeddable monoids, we consider nuclearity of the associated Toeplitz C*-algebra in relation to nuclearity of the coefficient algebra. Our work goes beyond the known cases of single correspondences and compactly aligned product systems over right least common multiple (LCM) monoids. Specifically, given a product system over a submonoid of a group, we show, under technical assumptions, that the fixed-point algebra of the gauge action is nuclear if and only if the coefficient algebra is nuclear; when the group is amenable, we conclude that this happens if and only if the Toeplitz algebra itself is nuclear. Our main results imply that nuclearity of the Toeplitz algebra is equivalent to nuclearity of the coefficient algebra for every full product system of Hilbert bimodules over abelian monoids, over $ax+b$-monoids of integral domains and over Baumslag–Solitar monoids $BS^+(m,n)$ that admit an amenable embedding, which we provide for m and n relatively prime.
We provide a characterization of equivariant Fock covariant injective representations for product systems. We show that this characterization coincides with Nica covariance for compactly aligned product systems over right least common multiple semigroups of Kwaśniewski and Larsen and with the Toeplitz representations of a discrete monoid of Laca and Sehnem. By combining with the framework established by Katsoulis and Ramsey, we resolve the reduced Hao–Ng isomorphism problem for generalized gauge actions by discrete groups.
We discuss representations of product systems (of $W^*$-correspondences) over the semigroup $\mathbb{Z}^n_+$ and show that, under certain pureness and Szegö positivity conditions, a completely contractive representation can be dilated to an isometric representation. For $n=1,2$ this is known to hold in general (without assuming the conditions), but for $n\geq 3$, it does not hold in general (as is known for the special case of isometric dilations of a tuple of commuting contractions). Restricting to the case of tuples of commuting contractions, our result reduces to a result of Barik, Das, Haria, and Sarkar (Isometric dilations and von Neumann inequality for a class of tuples in the polydisc. Trans. Amer. Math. Soc. 372 (2019), 1429–1450). Our dilation is explicitly constructed, and we present some applications.
For two $\sigma $-unital $C^*$-algebras, we consider two equivalence bimodules over them, respectively. Then, by taking the crossed products by the equivalence bimodules, we get two inclusions of $C^*$-algebras. Furthermore, we suppose that one of the inclusions of $C^*$-algebras is irreducible, that is, the relative commutant of one of the $\sigma $-unital $C^*$-algebras in the multiplier $C^*$-algebra of the crossed product is trivial. We will give a sufficient and necessary condition that the two inclusions are strongly Morita equivalent. Applying this result, we will compute the Picard group of a unital inclusion of unital $C^*$-algebras induced by an equivalence bimodule over the unital $C^*$-algebra under the assumption that the unital inclusion of unital $C^*$-algebras is irreducible.
In the first part of the paper, we use states on $C^{*}$-algebras in order to establish some equivalent statements to equality in the triangle inequality, as well as to the parallelogram identity for elements of a pre-Hilbert $C^{*}$-module. We also characterize the equality case in the triangle inequality for adjointable operators on a Hilbert $C^{*}$-module. Then we give certain necessary and sufficient conditions to the Pythagoras identity for two vectors in a pre-Hilbert $C^{*}$-module under the assumption that their inner product has a negative real part. We introduce the concept of Pythagoras orthogonality and discuss its properties. We describe this notion for Hilbert space operators in terms of the parallelogram law and some limit conditions. We present several examples in order to illustrate the relationship between the Birkhoff–James, Roberts, and Pythagoras orthogonalities, and the usual orthogonality in the framework of Hilbert $C^{*}$-modules.
Since their inception in the 1930s by von Neumann, operator algebras have been used to shed light on many mathematical theories. Classification results for self-adjoint and non-self-adjoint operator algebras manifest this approach, but a clear connection between the two has been sought since their emergence in the late 1960s. We connect these seemingly separate types of results by uncovering a hierarchy of classification for non-self-adjoint operator algebras and $C^{*}$-algebras with additional $C^{*}$-algebraic structure. Our approach naturally applies to algebras arising from $C^{*}$-correspondences to resolve self-adjoint and non-self-adjoint isomorphism problems in the literature. We apply our strategy to completely elucidate this newly found hierarchy for operator algebras arising from directed graphs.
We introduce a dimension group for a self-similar map as the $\mathrm {K}_0$-group of the core of the C*-algebra associated with the self-similar map together with the canonical endomorphism. The key step for the computation is an explicit description of the core as the inductive limit using their matrix representations over the coefficient algebra, which can be described explicitly by the singularity structure of branched points. We compute that the dimension group for the tent map is isomorphic to the countably generated free abelian group ${\mathbb Z}^{\infty }\cong {\mathbb Z}[t]$ together with the unilateral shift, i.e. the multiplication map by t as an abstract group. Thus the canonical endomorphisms on the $\mathrm {K}_0$-groups are not automorphisms in general. This is a different point compared with dimension groups for topological Markov shifts. We can count the singularity structure in the dimension groups.
We give necessary and sufficient conditions for nuclearity of Cuntz–Nica–Pimsner algebras for a variety of quasi-lattice ordered groups. First we deal with the free abelian lattice case. We use this as a stepping-stone to tackle product systems over quasi-lattices that are controlled by the free abelian lattice and satisfy a minimality property. Our setting accommodates examples like the Baumslag–Solitar lattice for $n=m>0$ and the right-angled Artin groups. More generally, the class of quasi-lattices for which our results apply is closed under taking semi-direct and graph products. In the process we accomplish more. Our arguments tackle Nica–Pimsner algebras that admit a faithful conditional expectation on a small fixed point algebra and a faithful copy of the coefficient algebra. This is the case for CNP-relative quotients in-between the Toeplitz–Nica–Pimsner algebra and the Cuntz–Nica–Pimsner algebra. We complete this study with the relevant results on exactness.
For a closed subgroup of a locally compact group the Rieffel induction process gives rise to a C*-correspondence over the C*-algebra of the subgroup. We study the associated Cuntz–Pimsner algebra and show that, by varying the subgroup to be open, compact, or discrete, there are connections with the Exel–Pardo correspondence arising from a cocycle, and also with graph algebras.
We show that if A is a compact C*-algebra without identity that has a faithful *-representation in the C*-algebra of all compact operators on a separable Hilbert space and its multiplier algebra admits a minimal central projection p such that pA is infinite-dimensional, then there exists a Hilbert A1-module admitting no frames, where A1 is the unitization of A. In particular, there exists a frame-less Hilbert C*-module over the C*-algebra $K(\ell^2) \dotplus \mathbb{C}I_{\ell^2}$.
We study the C*-algebras associated with upper semi-continuous Fell bundles over second-countable Hausdorff groupoids. Based on ideas going back to the Packer–Raeburn ‘stabilization trick’, we construct from each such bundle a groupoid dynamical system whose associated Fell bundle is equivalent to the original bundle. The upshot is that the full and reduced C*-algebras of any saturated upper semi-continuous Fell bundle are stably isomorphic to the full and reduced crossed products of an associated dynamical system. We apply our results to describe the lattice of ideals of the C*-algebra of a continuous Fell bundle by applying Renault's results about the ideals of the C*-algebras of groupoid crossed products. In particular, we discuss simplicity of the Fell-bundle C*-algebra of a bundle over G in terms of an action, described by Ionescu and Williams, of G on the primitive-ideal space of the C*-algebra of the part of the bundle sitting over the unit space. We finish with some applications to twisted k-graph algebras, where the components of our results become more concrete.
Let A = C(X) ⊗ K(H), where X is a compact Hausdorff space and K(H) is the algebra of compact operators on a separable infinite-dimensional Hilbert space. Let As be the algebra of strong*-continuous functions from X to K(H). Then As/A is the inner corona algebra of A. We show that if X has no isolated points, then As/A is an essential ideal of the corona algebra of A, and Prim(As/A), the primitive ideal space of As/A, is not weakly Lindelof. If X is also first countable, then there is a natural injection from the power set of X to the lattice of closed ideals of As/A. If X = βℕ\ℕ and the continuum hypothesis (CH) is assumed, then the corona algebra of A is a proper subalgebra of the multiplier algebra of As/A. Several of the results are obtained in the more general setting of C0(X)-algebras.
We show that the property of a C*-algebra that all its Hilbert modules have a frame, in the case of σ-unital C*-algebras, is preserved under Rieffel–Morita equivalence. In particular, we show that a σ-unital continuous-trace C*-algebra with trivial Dixmier–Douady class, all of whose Hilbert modules admit a frame, has discrete spectrum. We also show this for the tensor product of any commutative C*-algebra with the C*-algebra of compact operators on any Hilbert space.
Let $E$ be a (right) Hilbert module over a $C^{\ast }$-algebra $A$. If $E$ is equipped with a left action of a second $C^{\ast }$-algebra $B$, then tensor product with $E$ gives rise to a functor from the category of Hilbert $B$-modules to the category of Hilbert $A$-modules. The purpose of this paper is to study adjunctions between functors of this sort. We shall introduce a new kind of adjunction relation, called a local adjunction, that is weaker than the standard concept from category theory. We shall give several examples, the most important of which is the functor of parabolic induction in the tempered representation theory of real reductive groups. Each local adjunction gives rise to an ordinary adjunction of functors between categories of Hilbert space representations. In this way we shall show that the parabolic induction functor has a simultaneous left and right adjoint, namely the parabolic restriction functor constructed in Clare et al. [Parabolic induction and restriction via $C^{\ast }$-algebras and Hilbert $C^{\ast }$-modules, Compos. Math.FirstView (2016), 1–33, 2].
This paper is about the reduced group $C^{\ast }$-algebras of real reductive groups, and about Hilbert $C^{\ast }$-modules over these $C^{\ast }$-algebras. We shall do three things. First, we shall apply theorems from the tempered representation theory of reductive groups to determine the structure of the reduced $C^{\ast }$-algebra (the result has been known for some time, but it is difficult to assemble a full treatment from the existing literature). Second, we shall use the structure of the reduced $C^{\ast }$-algebra to determine the structure of the Hilbert $C^{\ast }$-bimodule that represents the functor of parabolic induction. Third, we shall prove that the parabolic induction bimodule admits a secondary inner product, using which we can define a functor of parabolic restriction in tempered representation theory. We shall prove in a sequel to this paper that parabolic restriction is adjoint, on both the left and the right, to parabolic induction in the context of tempered unitary Hilbert space representations.
For a countable discrete space $V$, every nondegenerate separable ${C}^{\ast } $-correspondence over ${c}_{0} (V)$ is isomorphic to one coming from a directed graph with vertex set $V$. In this paper we demonstrate why the analogous characterizations fail to hold for higher-rank graphs (where one considers product systems of ${C}^{\ast } $-correspondences) and for topological graphs (where $V$ is locally compact Hausdorff), and we discuss the obstructions that arise.
Let A be a unital C*-algebra with the canonical (H) C*-bundle over the maximal ideal space of the centre of A, and let E(A) be the set of all elementary operators on A. We consider derivations on A which lie in the completely bounded norm closure of E(A), and show that such derivations are necessarily inner in the case when each fibre of is a prime C*-algebra. We also consider separable C*-algebras A for which is an (F) bundle. For these C*-algebras we show that the following conditions are equivalent: E(A) is closed in the operator norm; A as a Banach module over its centre is topologically finitely generated; fibres of have uniformly finite dimensions, and each restriction bundle of over a set where its fibres are of constant dimension is of finite type as a vector bundle.
Algebras associated with quantum electrodynamics and other gauge theories share some mathematical features with T-duality. Exploiting this different perspective and some category theory, the full algebra of fermions and bosons can be regarded as a braided Clifford algebra over a braided commutative boson algebra, sharing much of the structure of ordinary Clifford algebras.