To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter is devoted to studying the existence of the least energy solutions for Schrodinger equations with subcritical growth and semilinear elliptic problems involving a Sobolev critical exponent in bounded domains. One of the main topics is to discuss how the compactness of the minimization sequences, or the Palais-Smale sequences, can be recovered by an energy constraint. Gloobal compactness results, which shows how a Palais-Smale sequence may lose its compactness, are also discussed. This chapter serves as a preliminary for the topics discussed in the subsequent chapters of this book.
Chapter 3 is devoted to studying the local uniqueness of peak/bubbling solutions. In the 1990s, local uniqueness problems were discussed by the classical degree counting methods, which rely crucially on the estimates of the second order derivatives of the solutions. In this chapter, such problems are addressed by using the local Pohozaev identities.Such methods simplify the classical degree counting methods considerable.Once again, to avoid many sophisticated estimates,we choosenonlinear Schrodinger equations with subcritical growth and the Brezis-Nirenberg problem to illustrate the main techniques.
This paper is concerned with the existence of solutions for a class of elliptic equations on the unit ball with zero Dirichlet boundary condition. The nonlinearity is supercritical in the sense of Trudinger–Moser. Using a suitable approximating scheme we obtain the existence of at least one positive solution.
Chemical reaction networks describe interactions between biochemical species. Once an underlying reaction network is given for a biochemical system, the system dynamics can be modelled with various mathematical frameworks such as continuous-time Markov processes. In this manuscript, the identifiability of the underlying network structure with a given stochastic system dynamics is studied. It is shown that some data types related to the associated stochastic dynamics can uniquely identify the underlying network structure as well as the system parameters. The accuracy of the presented network inference is investigated when given dynamical data are obtained via stochastic simulations.
By means of a counter-example, we show that the Reilly theorem for the upper bound of the first non-trivial eigenvalue of the Laplace operator of a compact submanifold of Euclidean space (Reilly, 1977, Comment. Mat. Helvetici, 52, 525–533) does not work for a (codimension ⩾2) compact spacelike submanifold of Lorentz–Minkowski spacetime. In the search of an alternative result, it should be noted that the original technique in (Reilly, 1977, Comment. Mat. Helvetici, 52, 525–533) is not applicable for a compact spacelike submanifold of Lorentz–Minkowski spacetime. In this paper, a new technique, based on an integral formula on a compact spacelike section of the light cone in Lorentz–Minkowski spacetime is developed. The technique is genuine in our setting, that is, it cannot be extended to another semi-Euclidean spaces of higher index. As a consequence, a family of upper bounds for the first eigenvalue of the Laplace operator of a compact spacelike submanifold of Lorentz–Minkowski spacetime is obtained. The equality for one of these inequalities is geometrically characterized. Indeed, the eigenvalue achieves one of these upper bounds if and only if the compact spacelike submanifold lies minimally in a hypersphere of certain spacelike hyperplane. On the way, the Reilly original result is reproved if a compact submanifold of a Euclidean space is naturally seen as a compact spacelike submanifold of Lorentz–Minkowski spacetime through a spacelike hyperplane.
We study the metric projection onto the closed convex cone in a real Hilbert space $\mathscr {H}$ generated by a sequence $\mathcal {V} = \{v_n\}_{n=0}^\infty $. The first main result of this article provides a sufficient condition under which the closed convex cone generated by $\mathcal {V}$ coincides with the following set:
$$ \begin{align*} \mathcal{C}[[\mathcal{V}]]: = \bigg\{\sum_{n=0}^\infty a_n v_n\Big|a_n\geq 0,\text{ the series }\sum_{n=0}^\infty a_n v_n\text{ converges in } \mathscr{H}\bigg\}. \end{align*} $$
Then, by adapting classical results on general convex cones, we give a useful description of the metric projection onto $\mathcal {C}[[\mathcal {V}]]$. As an application, we obtain the best approximations of many concrete functions in $L^2([-1,1])$ by polynomials with nonnegative coefficients.
We prove that perturbing the periodic annulus of the reversible quadratic polynomial differential system $\dot x=y+ax^2$, $\dot y=-x$ with a ≠ 0 inside the class of all quadratic polynomial differential systems we can obtain at most two limit cycles, including their multiplicities. Since the first integral of the unperturbed system contains an exponential function, the traditional methods cannot be applied, except in Figuerasa, Tucker and Villadelprat (2013, J. Diff. Equ., 254, 3647–3663) a computer-assisted method was used. In this paper, we provide a method for studying the problem. This is also the first purely mathematical proof of the conjecture formulated by Dumortier and Roussarie (2009, Discrete Contin. Dyn. Syst., 2, 723–781) for q ⩽ 2. The method may be used in other problems.
It is a fact simple to establish that the mixing time of the simple random walk on a d-regular graph $G_n$ with n vertices is asymptotically bounded from below by $\frac {d }{d-2 } \frac {\log n}{\log (d-1)}$. Such a bound is obtained by comparing the walk on $G_n$ to the walk on d-regular tree $\mathcal{T}_d$. If one can map another transitive graph $\mathcal{G} $ onto $G_n$, then we can improve the strategy by using a comparison with the random walk on $\mathcal{G} $ (instead of that of $\mathcal{T} _d$), and we obtain a lower bound of the form $\frac {1}{\mathfrak{h} }\log n$, where $\mathfrak{h} $ is the entropy rate associated with $\mathcal{G} $. We call this the entropic lower bound.
It was recently proved that in the case $\mathcal{G} =\mathcal{T} _d$, this entropic lower bound (in that case $\frac {d }{d-2 } \frac {\log n}{\log (d-1)}$) is sharp when graphs have minimal spectral radius and thus that in that case the random walk exhibits cutoff at the entropic time. In this article, we provide a generalisation of the result by providing a sufficient condition on the spectra of the random walks on $G_n$ under which the random walk exhibits cutoff at the entropic time. It applies notably to anisotropic random walks on random d-regular graphs and to random walks on random n-lifts of a base graph (including nonreversible walks).
In this paper, we construct a natural probability measure on the space of real branched coverings from a real projective algebraic curve $(X,c_X)$ to the projective line $(\mathbb{C} \mathbb {P}^1,\textit{conj} )$. We prove that the space of degree d real branched coverings having “many” real branched points (for example, more than $\sqrt {d}^{1+\alpha }$, for any $\alpha>0$) has exponentially small measure. In particular, maximal real branched coverings – that is, real branched coverings such that all the branched points are real – are exponentially rare.
The homotopy theory of gauge groups has received considerable attention in recent decades. In this work, we study the homotopy theory of gauge groups over some high-dimensional manifolds. To be more specific, we study gauge groups of bundles over (n − 1)-connected closed 2n-manifolds, the classification of which was determined by Wall and Freedman in the combinatorial category. We also investigate the gauge groups of the total manifolds of sphere bundles based on the classical work of James and Whitehead. Furthermore, other types of 2n-manifolds are also considered. In all the cases, we show various homotopy decompositions of gauge groups. The methods are combinations of manifold topology and various techniques in homotopy theory.
When an explosive burns, gaseous products are formed as a result. The interaction of the burning solid and gas is not well understood. More specifically, the process of the gaseous product heating the explosive is yet to be explored in detail. The present work sets out to fill some of that gap using mathematical modelling: this aims to track the temperature profile in the explosive. The work begins by modelling single-step reactions using a simple Arrhenius model. The model is then extended to include three-step reaction. An alternative asymptotic approach is also employed. There is close agreement between results from the full reaction-diffusion problem and the asymptotic problem.
Let R = K[x, σ] be the skew polynomial ring over a field K, where σ is an automorphism of K of finite order. We show that prime elements in R correspond to completely prime one-sided ideals – a notion introduced by Reyes in 2010. This extends the natural correspondence between prime elements and prime ideals in commutative polynomial rings.
We prove that the Kodaira dimension of the n-fold universal family of lattice-polarised holomorphic symplectic varieties with dominant and generically finite period map stabilises to the moduli number when n is sufficiently large. Then we study the transition of Kodaira dimension explicitly, from negative to nonnegative, for known explicit families of polarised symplectic varieties. In particular, we determine the exact transition point in the Beauville–Donagi and Debarre–Voisin cases, where the Borcherds $\Phi _{12}$ form plays a crucial role.