To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a simple graph that is properly edge-coloured with m colours and let \[\mathcal{M} = \{ {M_1},...,{M_m}\} \] be the set of m matchings induced by the colours in G. Suppose that \[m \leqslant n - {n^c}\], where \[c > 9/10\], and every matching in \[\mathcal{M}\] has size n. Then G contains a full rainbow matching, i.e. a matching that contains exactly one edge from Mi for each \[1 \leqslant i \leqslant m\]. This answers an open problem of Pokrovskiy and gives an affirmative answer to a generalization of a special case of a conjecture of Aharoni and Berger. Related results are also found for multigraphs with edges of bounded multiplicity, and for hypergraphs.
Finally, we provide counterexamples to several conjectures on full rainbow matchings made by Aharoni and Berger.
We consider the fractional elliptic problem:where B1 is the unit ball in ℝN, N ⩾ 3, s ∈ (0, 1) and p > (N + 2s)/(N − 2s). We prove that this problem has infinitely many solutions with slow decay O(|x|−2s/(p−1)) at infinity. In addition, for each s ∈ (0, 1) there exists Ps > (N + 2s)/(N − 2s), for any (N + 2s)/(N − 2s) < p < Ps, the above problem has a solution with fast decay O(|x|2s−N). This result is the extension of the work by Dávila, del Pino, Musso and Wei (2008, Calc. Var. Partial Differ. Equ. 32, no. 4, 453–480) to the fractional case.
We study the Muskat problem describing the vertical motion of two immiscible fluids in a two-dimensional homogeneous porous medium in an Lp-setting with p ∈ (1, ∞). The Sobolev space $W_p^s(\mathbb R)$ with s = 1+1/p is a critical space for this problem. We prove, for each s ∈ (1+1/p, 2) that the Rayleigh–Taylor condition identifies an open subset of $W_p^s(\mathbb R)$ within which the Muskat problem is of parabolic type. This enables us to establish the local well-posedness of the problem in all these subcritical spaces together with a parabolic smoothing property.
Poroelastic effects have been of great interest in the seismic literature as they have been identified as a major cause of wave attenuation in heterogeneous porous media. The observed attenuation in the seismic wave can be explained in part by energy loss to fluid motion in the pores. On the other hand, it is known that the attenuation is particularly pronounced in stratified structures where the scale of spatial heterogeneity is much smaller than the seismic wavelength. Understanding of poroelastic effects on seismic wave attenuation in heterogeneous porous media has largely relied on numerical experiments. In this work, we present a homogenisation technique to obtain an upscaled viscoelastic model that captures seismic wave attenuation when the sub-seismic scale heterogeneity is periodic. The upscaled viscoelastic model directly relates seismic wave attenuation to the material properties of the heterogeneous structure. We verify our upscaled viscoelastic model against a full poroelastic model in numerical experiments. Our homogenisation technique suggests a new approach for solving coupled equations of motion.
We link distinct concepts of geometric group theory and homotopy theory through underlying combinatorics. For a flag simplicial complex $K$, we specify a necessary and sufficient combinatorial condition for the commutator subgroup $RC_K'$ of a right-angled Coxeter group, viewed as the fundamental group of the real moment-angle complex $\mathcal {R}_K$, to be a one-relator group; and for the Pontryagin algebra $H_{*}(\Omega \mathcal {Z}_K)$ of the moment-angle complex to be a one-relator algebra. We also give a homological characterization of these properties. For $RC_K'$, it is given by a condition on the homology group $H_2(\mathcal {R}_K)$, whereas for $H_{*}(\Omega \mathcal {Z}_K)$ it is stated in terms of the bigrading of the homology groups of $\mathcal {Z}_K$.
Greenlees has conjectured that the rational stable equivariant homotopy category of a compact Lie group always has an algebraic model. Based on this idea, we show that the category of rational local systems on a connected finite loop space always has a simple algebraic model. When the loop space arises from a connected compact Lie group, this recovers a special case of a result of Pol and Williamson about rational cofree G-spectra. More generally, we show that if K is a closed subgroup of a compact Lie group G such that the Weyl group WGK is connected, then a certain category of rational G-spectra “at K” has an algebraic model. For example, when K is the trivial group, this is just the category of rational cofree G-spectra, and this recovers the aforementioned result. Throughout, we pay careful attention to the role of torsion and complete categories.
We introduce a general definition for coloured cyclic operads over a symmetric monoidal ground category, which has several appealing features. The forgetful functor from coloured cyclic operads to coloured operads has both adjoints, each of which is relatively simple. Explicit formulae for these adjoints allow us to lift the Cisinski–Moerdijk model structure on the category of coloured operads enriched in simplicial sets to the category of coloured cyclic operads enriched in simplicial sets.
In this paper, we study the initial-boundary value problem of a repulsion Keller–Segel system with a logarithmic sensitivity modelling the reinforced random walk. By establishing an energy–dissipation identity, we prove the existence of classical solutions in two dimensions as well as existence of weak solutions in the three-dimensional setting. Moreover, it is shown that the weak solutions enjoy an eventual regularity property, i.e., it becomes regular after certain time T > 0. An exponential convergence rate towards the spatially homogeneous steady states is obtained as well. We adopt a new approach developed recently by the author to study the eventual regularity. The argument is based on observation of the exponential stability of constant solutions in scaling-invariant spaces together with certain dissipative property of the global solutions in the same spaces.
We study the l-adic cohomology of unramified Rapoport–Zink spaces of EL-type. These spaces were used in Harris and Taylor’s proof of the local Langlands correspondence for $\mathrm {GL_n}$ and to show local–global compatibilities of the Langlands correspondence. In this paper we consider certain morphisms $\mathrm {Mant}_{b, \mu }$ of Grothendieck groups of representations constructed from the cohomology of these spaces, as studied by Harris and Taylor, Mantovan, Fargues, Shin and others. Due to earlier work of Fargues and Shin we have a description of $\mathrm {Mant}_{b, \mu }(\rho )$ for $\rho $ a supercuspidal representation. In this paper, we give a conjectural formula for $\mathrm {Mant}_{b, \mu }(\rho )$ for $\rho $ an admissible representation and prove it when $\rho $ is essentially square-integrable. Our proof works for general $\rho $ conditionally on a conjecture appearing in Shin’s work. We show that our description agrees with a conjecture of Harris in the case of parabolic inductions of supercuspidal representations of a Levi subgroup.
We investigate, both analytically and numerically, dispersive fractalisation and quantisation of solutions to periodic linear and nonlinear Fermi–Pasta–Ulam–Tsingou systems. When subject to periodic boundary conditions and discontinuous initial conditions, e.g., a step function, both the linearised and nonlinear continuum models for FPUT exhibit fractal solution profiles at irrational times (as determined by the coefficients and the length of the interval) and quantised profiles (piecewise constant or perturbations thereof) at rational times. We observe a similar effect in the linearised FPUT chain at times t where these models have validity, namely t = O(h−2), where h is proportional to the intermass spacing or, equivalently, the reciprocal of the number of masses. For nonlinear periodic FPUT systems, our numerical results suggest a somewhat similar behaviour in the presence of small nonlinearities, which disappears as the nonlinear force increases in magnitude. However, these phenomena are manifested on very long time intervals, posing a severe challenge for numerical integration as the number of masses increases. Even with the high-order splitting methods used here, our numerical investigations are limited to nonlinear FPUT chains with a smaller number of masses than would be needed to resolve this question unambiguously.
Delayed production can substantially alter the qualitative behaviour of feedback systems. Motivated by stochastic mechanisms in gene expression, we consider a protein molecule which is produced in randomly timed bursts, requires an exponentially distributed time to activate and then partakes in positive regulation of its burst frequency. Asymptotically analysing the underlying master equation in the large-delay regime, we provide tractable approximations to time-dependent probability distributions of molecular copy numbers. Importantly, the presented analysis demonstrates that positive feedback systems with large production delays can constitute a stable toggle switch even if they operate with low copy numbers of active molecules.
We use some detailed knowledge of the cohomology ring of real Grassmann manifolds Gk(ℝn) to compute zero-divisor cup-length and estimate topological complexity of motion planning for k-linear subspaces in ℝn. In addition, we obtain results about monotonicity of Lusternik–Schnirelmann category and topological complexity of Gk(ℝn) as a function of n.
The existence of a symmetric mode in an elastic solid wedge for all admissible values of the Poisson ratio and arbitrary interior angles close to π has been proven.
We prove a new upper bound on the second moment of Maass form symmetric square L-functions defined over Gaussian integers. Combining this estimate with the recent result of Balog–Biro–Cherubini–Laaksonen, we improve the error term in the prime geodesic theorem for the Picard manifold.
We derive a quadratic recursion relation for the linear Hodge integrals of the form $\langle \tau _{2}^{n}\lambda _{k}\rangle $. These numbers are used in a formula for Masur-Veech volumes of moduli spaces of quadratic differentials discovered by Chen, Möller and Sauvaget. Therefore, our recursion provides an efficient way of computing these volumes.
We prove uniform Hölder regularity estimates for a transport-diffusion equation with a fractional diffusion operator and a general advection field in of bounded mean oscillation, as long as the order of the diffusion dominates the transport term at small scales; our only requirement is the smallness of the negative part of the divergence in some critical Lebesgue space. In comparison to a celebrated result by Silvestre, our advection field does not need to be bounded. A similar result can be obtained in the supercritical case if the advection field is Hölder continuous. Our proof is inspired by Kiselev and Nazarov and is based on the dual evolution technique. The idea is to propagate an atom property (i.e., localisation and integrability in Lebesgue spaces) under the dual conservation law, when it is coupled with the fractional diffusion operator.
We prove a number of results related to a problem of Po-Shen Loh [9], which is equivalent to a problem in Ramsey theory. Let a = (a1, a2, a3) and b = (b1, b2, b3) be two triples of integers. Define a to be 2-less than b if ai < bi for at least two values of i, and define a sequence a1, …, am of triples to be 2-increasing if ar is 2-less than as whenever r < s. Loh asks how long a 2-increasing sequence can be if all the triples take values in {1, 2, …, n}, and gives a log* improvement over the trivial upper bound of n2 by using the triangle removal lemma. In the other direction, a simple construction gives a lower bound of n3/2. We look at this problem and a collection of generalizations, improving some of the known bounds, pointing out connections to other well-known problems in extremal combinatorics, and asking a number of further questions.
We define the Atiyah class for global matrix factorisations and use it to give a formula for the categorical Chern character and the boundary-bulk map for matrix factorisations, generalising the formula in the local case obtained in [12]. Our approach is based on developing the Lie algebra analogies observed by Kapranov [7] and Markarian [9].
We establish Bohr inequalities for operator-valued functions, which can be viewed as analogues of a couple of interesting results from scalar-valued settings. Some results of this paper are motivated by the classical flavour of Bohr inequality, while others are based on a generalized concept of the Bohr radius problem.
Following Losik’s approach to Gelfand’s formal geometry, certain characteristic classes for codimension-one foliations coming from the Gelfand-Fuchs cohomology are considered. Sufficient conditions for nontriviality in terms of dynamical properties of generators of the holonomy groups are found. The nontriviality for the Reeb foliations is shown; this is in contrast with some classical theorems on the Godbillon-Vey class; for example, the Mizutani-Morita-Tsuboi theorem about triviality of the Godbillon-Vey class of foliations almost without holonomy is not true for the classes under consideration. It is shown that the considered classes are trivial for a large class of foliations without holonomy. The question of triviality is related to ergodic theory of dynamical systems on the circle and to the problem of smooth conjugacy of local diffeomorphisms. Certain classes are obstructions for the existence of transverse affine and projective connections.