To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We extend the notion of regular coherence from rings to additive categories and show that well-known consequences of regular coherence for rings also apply to additive categories. For instance, the negative K-groups and all twisted Nil-groups vanish for an additive category, if it is regular coherent. This will be applied to nested sequences of additive categories, motivated by our ongoing project to determine the algebraic K-theory of the Hecke algebra of a reductive p-adic group.
We discuss representations of product systems (of $W^*$-correspondences) over the semigroup $\mathbb{Z}^n_+$ and show that, under certain pureness and Szegö positivity conditions, a completely contractive representation can be dilated to an isometric representation. For $n=1,2$ this is known to hold in general (without assuming the conditions), but for $n\geq 3$, it does not hold in general (as is known for the special case of isometric dilations of a tuple of commuting contractions). Restricting to the case of tuples of commuting contractions, our result reduces to a result of Barik, Das, Haria, and Sarkar (Isometric dilations and von Neumann inequality for a class of tuples in the polydisc. Trans. Amer. Math. Soc. 372 (2019), 1429–1450). Our dilation is explicitly constructed, and we present some applications.
The monogenic free inverse semigroup $FI_1$ is not finitely presented as a semigroup due to the classic result by Schein (1975). We extend this result and prove that a finitely generated subsemigroup of $FI_1$ is finitely presented if and only if it contains only finitely many idempotents. As a consequence, we derive that an inverse subsemigroup of $FI_1$ is finitely presented as a semigroup if and only if it is a finite semilattice.
We present some fundamental aspects of the representation theory of reductive p-adic groups, mapping out some recent developments, including the ABPS conjecture and the description of the structure of the reduced C*-algebras of reductive groups. The exposition proceeds fairly rapidly, but is essentially self-contained.
We start by introducing C*-algebras associated with locally compact groups. Next, the theory of Hilbert modules, C*-correspondences, crossed-product algebras, and Morita equivalence are discussed. This is followed with applications to Mackey’s theory of induction of representations and Howe’s theory of theta correspondence. Next, K-theory and (equivariant) KK-theory are introduced. Connections between isolated points in the unitary dual and generators of the K-theory of C*-algebras of liminal groups are discussed.
We start by describing the fundamental theory of representation theory of a semisimple Lie group. This is followed by a classification of almost all irreducible tempered representations of a connected, semisimple, linear Lie group. We apply this classification to describe the structure of the reduced group C*-algebras of such groups.
where the homogeneous nonlinearities $f(s)=\alpha_0|s|^p+\alpha_1|s|^{p-1}s$, with p > 1. If $\alpha_0,\alpha_1 \gt 0$, $\alpha\in\mathbb{R}$, and γ < 0 satisfying $\beta\gamma=-1$, we show that for $1 \lt p \lt 5$, there exists a constrained ground state traveling wave solution with travelling velocity $\omega \gt \alpha-2$. Furthermore, we obtain the exponential decay estimates and the weak non-degeneracy of the solution. Finally, we show that the solution is spectrally stable. This is a continuation of recent work [1] on existence and stability for a water wave model with non-homogeneous nonlinearities.
We consider the space $\mathcal{P}_d$ of smooth complex projective plane curves of degree $d$. There is the tautological family of plane curves defined over $\mathcal{P}_d$, which has an associated monodromy representation $\rho _d: \pi _1(\mathcal{P}_d) \to \textrm{Mod}(\Sigma _g)$ into the mapping class group of the fiber. For $d \le 4$, classical algebraic geometry implies the surjectivity of $\rho _d$. For $d \ge 5$, the existence of a $(d-3)^{rd}$ root of the canonical bundle implies that $\rho _d$ cannot be surjective. The main result of this paper is that for $d = 5$, the image of $\rho _5$ is as large as possible, subject to this constraint. This requires combining the algebro-geometric work of Lönne with Johnson’s theory of the Torelli subgroup of $\textrm{Mod}(\Sigma _g)$.
This chapter is an introduction to the geometric perspective of tempered representations of connected reductive Lie groups via Dirac induction and the Connes–Kasparov isomorphism. We start with discussing Dirac operators in spin geometry. We then recall some classical Dirac operators on homogeneous spaces arising in representation theory. Next, we introduce the theory of higher index to be used as a language to formulate the Connes–Kasparov conjecture. In Section 3.4, we introduce Dirac induction, the Connes–Kasparov conjecture, and survey a couple of ways for proving it. The final section is devoted to the harmonic-analytic approach to the Connes–Kasparov isomorphism illustrated by the example of connected semisimple groups.
where $N\geq2$, $0 \lt s \lt 1$, $2 \lt q \lt p \lt 2_s^*=2N/(N-2s)$, and $\mu\in\mathbb{R}$. The primary challenge lies in the inhomogeneity of the nonlinearity.We deal with the following three cases: (i) for $2 \lt q \lt p \lt 2+4s/N$ and µ < 0, there exists a threshold mass a0 for the existence of the least energy normalized solution; (ii) for $2+4s/N \lt q \lt p \lt 2_s^*$ and µ > 0, we reveal the existence of the ground state solution, explore the strong instability of standing waves, and provide a blow-up criterion; (iii) for $2 \lt q\leq2+4s/N \lt p \lt 2_s^*$ and µ < 0, the strong instability of standing wave solutions is demonstrated. These findings are illuminated through variational characterizations, the profile decomposition, and the virial estimate.
The goal of this paper is to show that the theory of curvature invariant, as introduced by Arveson, admits a natural extension to the framework of ${\mathcal U}$-twisted polyballs $B^{\mathcal U}({\mathcal H})$ which consist of k-tuples $(A_1,\ldots, A_k)$ of row contractions $A_i=(A_{i,1},\ldots, A_{i,n_i})$ satisfying certain ${\mathcal U}$-commutation relations with respect to a set ${\mathcal U}$ of unitary commuting operators on a Hilbert space ${\mathcal H}$. Throughout this paper, we will be concerned with the curvature of the elements $A\in B^{\mathcal U}({\mathcal H})$ with positive trace class defect operator $\Delta_A(I)$. We prove the existence of the curvature invariant and present some of its basic properties. A distinguished role as a universal model among the pure elements in ${\mathcal U}$-twisted polyballs is played by the standard $I\otimes{\mathcal U}$-twisted multi-shift S acting on $\ell^2({\mathbb F}_{n_1}^+\times\cdots\times {\mathbb F}_{n_k}^+)\otimes {\mathcal H}$. The curvature invariant $\mathrm{curv} (A)$ can be any non-negative real number and measures the amount by which A deviates from the universal model S. Special attention is given to the $I\otimes {\mathcal U}$-twisted multi-shift S and the invariant subspaces (co-invariant) under S and $I\otimes {\mathcal U}$, due to the fact that any pure element $A\in B^{\mathcal U}({\mathcal H})$ with $\Delta_A(I)\geq 0$ is the compression of S to such a co-invariant subspace.