To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish a weak local boundedness to Lane–Emden systems in two-dimensional domains involving general second-order elliptic operators in divergence form and arbitrary positive powers whose product equals 1. Our result is complete in the sense that it reduces to that of Trudinger for single equations. As a counterpart, we derive a new Harnack estimate for such systems and, as a by-product, for biharmonic equations.
For finite nilpotent groups $J$ and $N$, suppose $J$ acts on $N$ via automorphisms. We exhibit a decomposition of the first cohomology set in terms of the first cohomologies of the Sylow $p$-subgroups of $J$ that mirrors the primary decomposition of $H^1(J,N)$ for abelian $N$. We then show that if $N \rtimes J$ acts on some non-empty set $\Omega$, where the action of $N$ is transitive and for each prime $p$ a Sylow $p$-subgroup of $J$ fixes an element of $\Omega$, then $J$ fixes an element of $\Omega$.
The fine curve graph of a surface was introduced by Bowden, Hensel, and Webb as a graph consisting of essential simple closed curves in the surface. Long, Margalit, Pham, Verberne, and Yao proved that the automorphism group of the fine curve graph of a closed orientable surface is isomorphic to the homeomorphism group of the surface. In this paper, based on their argument, we prove that the automorphism group of the fine curve graph of a closed nonorientable surface $N$ of genus $g \geq 4$ is isomorphic to the homeomorphism group of $N$.
We investigate the existence of 4-torsion in the integral cohomology of oriented Grassmannians. We establish bounds on the characteristic rank of oriented Grassmannians and prove some cases of our previous conjecture on the characteristic rank. We also discuss the relation between the characteristic rank and a result of Stong on the height of w1 in the cohomology of Grassmannians. The existence of 4-torsion classes follows from the results on the characteristic rank via Steenrod square considerations. We thus exhibit infinitely many examples of 4-torsion classes for oriented Grassmannians. We also prove bounds on torsion exponents of oriented flag manifolds. The article also discusses consequences of our results for a more general perspective on the relation between the torsion exponent and deficiency for homogeneous spaces.
Topological spaces in general, and the real numbers in particular, have the characteristic of exhibiting a 'continuity structure', one that can be examined from the vantage point of Baire category or of Lebesgue measure. Though they are in some sense dual, work over the last half-century has shown that it is the former, topological view, that has pride of place since it reveals a much richer structure that draws from, and gives back to, areas such as analytic sets, infinite games, probability, infinite combinatorics, descriptive set theory and topology. Keeping prerequisites to a minimum, the authors provide a new exposition and synthesis of the extensive mathematical theory needed to understand the subject's current state of knowledge, and they complement their presentation with a thorough bibliography of source material and pointers to further work. The result is a book that will be the standard reference for all researchers in the area.
We prove a synthetic Bonnet–Myers rigidity theorem for globally hyperbolic Lorentzian length spaces with global curvature bounded below by K < 0 and an open distance realizer of length $L=\frac{\pi}{\sqrt{|K|}}$: It states that the space necessarily is a warped product with warping function $\cos: (-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}_+$. From this, one also sees that a globally hyperbolic spacetime with curvature bounded above by K < 0 and an open distance realizer of length $L=\frac{\pi}{\sqrt{|K|}}$ is a warped product with warping function cos.
Let X be a complex Banach space and B be a closed linear operator with domain $\mathcal{D}(B) \subset X,\,\, a,b,c,d\in\mathbb{R},$ and $0 \lt \beta \lt \alpha.$ We prove that the problem
where $g_{\alpha}(t)=t^{\alpha-1}/\Gamma(\alpha)$ and $h:\mathbb{R}_+\to X$ is given, has a unique solution for any initial condition on $\mathcal{D}(B)\times X$ as long as the operator B generates an ad-hoc Laplace transformable and strongly continuous solution family $\{R_{\alpha,\beta}(t)\}_{t\geq 0} \subset \mathcal{L}(X).$ It is shown that such a solution family exists whenever the pair $(\alpha,\beta)$ belongs to a subset of the set $(1,2]\times(0,1]$ and B is the generator of a cosine family or a C0-semigroup in $X.$ In any case, it also depends on certain compatibility conditions on the real parameters $a,b,c,d$ that must be satisfied.
Contemporary epidemiological models often involve spatial variation, providing an avenue to investigate the averaged dynamics of individual movements. In this work, we extend a recent model by Vaziry, Kolokolnikov, and Kevrekidis [Royal Society Open Science 9 (10), 2022] that included, in both infected and susceptible population dynamics equations, a cross-diffusion term with the second spatial derivative of the infected population density. Diffusion terms of this type occur, for example, in the Keller–Siegel chemotaxis model. The presented model corresponds to local orderly commute of susceptible and infected individuals and is shown to arise in two dimensions as a limit of a discrete process. The present contribution identifies and studies specific features of the new model’s dynamics, including various types of infection waves and buffer zones protected from the infection. The model with vital dynamics additionally exhibits complex spatio-temporal behaviour that involves the generation of quasiperiodic infection waves and emergence of transient strongly heterogeneous patterns.
The topological structure of ‘mean dichotomy spectrum’ is shown in this article, as an extension of Sacker–Sell spectrum and non-uniform dichotomy spectrum. With regard to mean hyperbolic systems, the coexistence of expansion and contraction behaviours can lead to non-hyperbolic phenomena during evolution process. To be precise, distinct from uniform and non-uniform hyperbolic cases, error hyperbolic degree $\varepsilon(t,\tau)$ is vital to depict the spectral manifolds. As application, the reducibility theorem for mean hyperbolic systems is provided to deduce block diagonalization.
We characterize the functions with ‘small’ bounded mean oscillation (BMO) norm by establishing the precise connection between the space BMO and class $A_\infty$ of Muckenhoupt weights. We prove that there exists a universal constant $c^*_2$ such that $\Vert f \Vert_{BMO} \lt c^*_2$ if and only if $\exp f \in A_2$, where $c^*_2$ is the sharp constant in the John and Nirenberg inequality. Similarly, in dimension one, we prove that $\Vert f \Vert_{BLO} \lt 1$ if and only if $\exp f \in A_1$. As application we introduce a structure of metric space in $A_\infty$ and prove that the closed unit ball of $A_\infty$ is a Banach space.
Let $\Gamma $ be a finitely generated group of matrices over $\mathbb {C}$. We construct an isometric action of $\Gamma $ on a complete $\mathrm {CAT}(0)$ space such that the restriction of this action to any subgroup of $\Gamma $ containing no nontrivial unipotent elements is well behaved. As an application, we show that if M is a graph manifold that does not admit a nonpositively curved Riemannian metric, then any finite-dimensional $\mathbb {C}$-linear representation of $\pi _1(M)$ maps a nontrivial element of $\pi _1(M)$ to a unipotent matrix. In particular, the fundamental groups of such 3-manifolds do not admit any faithful finite-dimensional unitary representations.
Many science phenomena are modelled as interacting particle systems (IPS) coupled on static networks. In reality, network connections are far more dynamic. Connections among individuals receive feedback from nearby individuals and make changes to better adapt to the world. Hence, it is reasonable to model myriad real-world phenomena as co-evolutionary (or adaptive) networks. These networks are used in different areas including telecommunication, neuroscience, computer science, biochemistry, social science, as well as physics, where Kuramoto-type networks have been widely used to model interaction among a set of oscillators. In this paper, we propose a rigorous formulation for limits of a sequence of co-evolutionary Kuramoto oscillators coupled on heterogeneous co-evolutionary networks, which receive both positive and negative feedback from the dynamics of the oscillators on the networks. We show under mild conditions, the mean field limit (MFL) of the co-evolutionary network exists and the sequence of co-evolutionary Kuramoto networks converges to this MFL. Such MFL is described by solutions of a generalised Vlasov equation. We treat the graph limits as signed graph measures, motivated by the recent work in [Kuehn, Xu. Vlasov equations on digraph measures, JDE, 339 (2022), 261–349]. In comparison to the recently emerging works on MFLs of IPS coupled on non-co-evolutionary networks (i.e., static networks or time-dependent networks independent of the dynamics of the IPS), our work seems the first to rigorously address the MFL of a co-evolutionary network model. The approach is based on our formulation of a generalisation of the co-evolutionary network as a hybrid system of ODEs and measure differential equations parametrised by a vertex variable, together with an analogue of the variation of parameters formula, as well as the generalised Neunzert’s in-cell-particle method developed in [Kuehn, Xu. Vlasov equations on digraph measures, JDE, 339 (2022), 261–349].
In this article, we study the two membranes problem for operators given in terms of a mean value formula on a regular tree. We show existence of solutions under adequate conditions on the boundary data and the involved source terms. We also show that, when the boundary data are strictly separated, the coincidence set is separated from the boundary and thus it contains only a finite number of nodes.
The focus of this paper is to introduce an alternating inertial Tseng-type method for approximating singularity point of an inclusion problem which is defined by means of sum of a single-valued vector and a multi-valued vector field in the setting of a Hadamard manifold. Using our iterative method, we prove that the sequence generated by our method converges to a singularity point under some mild conditions. We also establish a linear convergence result when the operator is strongly monotone. As far as we are concerned, there are no results on alternating inertial steps for solving inclusion problems in the settings of Hadamard manifolds. Lastly, we present a numerical example to show the performance of our method. The result present in this article extends and generalizes many related results in the literature.
Works by O’Grady allow to associate with a two-dimensional Gushel–Mukai (GM) variety, which is a K3 surface, a double Eisenbud–Popescu–Walter (EPW) sextic. We characterize the $K3$ surfaces whose associated double EPW sextic is smooth. As a consequence, we are able to produce symplectic actions on some families of smooth double EPW sextics which are hyper-Kähler manifolds.
We also provide bounds for the automorphism group of GM varieties in dimension 2 and higher.