To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With every matrix representation of the (real) full linear group can be associated a multi-linear mapping of one affine space, Rn, into another, RN. This mapping is studied from the viewpoint of the geometry of numbers of convex bodies, and a general arithmetical property of such mappings is proved. The result generalizes my recent work on compound convex bodies.
The main result of this series of papers is a theorem on the free product of groups (Theorem 1) which formed part of a doctoral thesis. This theorem has an immediate application to the word problem (Theorem 2). Usually the word problem refers to a finite system of generators and a finite number of defining relations, but in this context it is more natural to allow an infinite number of generators and defining relations. This (infinite) word problem is not solvable in general (Example 2).
Although there is an extensive literature dealing with the location of characteristic roots of matrices, the problem of estimating the maximum distance between two characteristic roots of a given matrix does not appear to have attracted much attention. In the present note we shall be concerned with this problem.
Subdivision of the fundamental equation of elasticity into two wave equations appears in most text-books on elasticity theory but the two types of vibration are rarely considered independently. Prescott [1] discussed the possibility of the separate existence of plane dilational and distortional waves in semi-infinite material and, failing to satisfy the conditions at a stress-free boundary, concluded that the two types of motion could not exist independently in such circumstances. He therefore derived solutions using combinations of the two types of vibrations. In this paper it is shown that Prescott's solutions are not unique and that special types of purely dilational and purely distortional vibrations are possible in the presence of a free plane boundary. The problem first investigated by Lamb [2] and later by Cooper [3] of transient vibrations of an infinite plate is then considered. In view of the complexity of the equations involved it is worth while attempting to use the subdivision of the fundamental equation to split the problem into simpler problems. In this connection the possibility of dilational or distortional vibrations alone is investigated and a stable form of distortional waves is discovered. It is seen, however, that subdivision of the general problem is not possible.
dis any positive integer which is not a perfect square. For convenience we shall consider only those solutions of (1) for which x and yare both positive. All the others can be obtained from these. In fact, it is well known that if (x0, y0) is the minimum positive integer solution of (1), then all integer solutions (x, y) are given by
and, in particular, all positive integer solutions are given by
Marshall Hall has proved that every real number is representable as the sum of two continued fractions with partial quotients at most 4. This implies that for any real β1, β2 there exists a real α such that
for all integers x > 0 and y, where C is a positive constant. In this note I prove a generalization to r numbers β2, …, βr. The case r = 2 implies a result similar to Marshall Hall's but with a larger number (71) in place of 4.
Let (x1, y1), …, (xN, yN) be N points in the square 0 ≤ x < 1, 0 ≤ y < 1. For any point (ξ, η) in this square, let S(ξ, η) denote the number of points of the set satisfying
A complex-valued function ƒ is said by W. Maak [1] to be almost periodic (a.p.) on Rn if for every positive number ε there is a decomposition of Rn into a finite number of sets S such that
for all h in Rn and all pairs x, y belonging to the same S. This definition is equivalent to that of Bohr when ƒ is continuous.
In what follows, groups are written additively, and commutators are denoted by brackets:
A group is metabelian if it satisfies the law
It is conceivable, though not plausible, that this law is equivalent to a law, or a set of laws, in only three variables, or even two. The present note shows that this is not the case.
The recurrence formulae for the Bessel, Legendre, hypergeometric and other such functions can all be related to each other by means of the E-functions. In this paper it will be shown how, starting from known recurrence formulae for the hypergeometric function, others can be derived. The E-function formulae are deduced in § 2, and the others in § 3.
It has long been conjectured that any indefinite quadratic form, with real coefficients, in 5 or more variables assumes values arbitrarily near to 0 for suitable integral values of the variables, not all 0. The basis for this conjecture is the fact, proved by Meyer in 1883, that any such form with rational coefficients actually represents 0.
In a recent paper [1] we showed that there is a (1,) -correspondence between the homomorphisms of an inverse semigroup S and its normal subsemigroups. The normal subsemigroup of S corresponding to and determining the homomorphism μ of S is the inverse image under μ of the set of idempotents of Sμ and is called the kernel of the homomorphism μ. The inverse image of each idempotent of Sμ is itself an inverse semigroup [1], and each such inverse semigroup is said to be a component of the normal subsemigroup determined by μ.
Following, for example, Kurošs [8], we define the (transfinite) upper central series of a group G to be the series
such that Zα + 1/Za is the centre of G/Zα, and if β is a limit ordinal, then If α is the least ordinal for which Zα =Zα+1=…, then we say that the upper central series has length α, and that Zα= His the hypercentre of G. As usual, we call G nilpotent if Zn= Gfor some finite n.
In the following pages there will be found an account of the properties of a certain class of local rings which are here termed semi-regular local rings. As this name will suggest, these rings share many properties in common with the more familiar regular local rings, but they form a larger class and the characteristic properties are preserved under a greater variety of transformations. The first occasion on which these rings were studied by the author was in connection with a problem concerning the irreducibility of certain ideals, but about the same time they were investigated in much greater detail by Rees [7] and in quite a different connection. In his discussion, Rees made considerable use of the ideas and techniques of homological algebra. Here a number of the same results, as well as some additional ones, are established by quite different methods. The essential tools used on this occasion are the results obtained by Lech [3] in his important researches concerning the associativity formula for multiplicities. Before describing these, we shall first introduce some notation which will be used consistently throughout the rest of the paper.