To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
where $N\geq2$, $0 \lt s \lt 1$, $2 \lt q \lt p \lt 2_s^*=2N/(N-2s)$, and $\mu\in\mathbb{R}$. The primary challenge lies in the inhomogeneity of the nonlinearity.We deal with the following three cases: (i) for $2 \lt q \lt p \lt 2+4s/N$ and µ < 0, there exists a threshold mass a0 for the existence of the least energy normalized solution; (ii) for $2+4s/N \lt q \lt p \lt 2_s^*$ and µ > 0, we reveal the existence of the ground state solution, explore the strong instability of standing waves, and provide a blow-up criterion; (iii) for $2 \lt q\leq2+4s/N \lt p \lt 2_s^*$ and µ < 0, the strong instability of standing wave solutions is demonstrated. These findings are illuminated through variational characterizations, the profile decomposition, and the virial estimate.
The goal of this paper is to show that the theory of curvature invariant, as introduced by Arveson, admits a natural extension to the framework of ${\mathcal U}$-twisted polyballs $B^{\mathcal U}({\mathcal H})$ which consist of k-tuples $(A_1,\ldots, A_k)$ of row contractions $A_i=(A_{i,1},\ldots, A_{i,n_i})$ satisfying certain ${\mathcal U}$-commutation relations with respect to a set ${\mathcal U}$ of unitary commuting operators on a Hilbert space ${\mathcal H}$. Throughout this paper, we will be concerned with the curvature of the elements $A\in B^{\mathcal U}({\mathcal H})$ with positive trace class defect operator $\Delta_A(I)$. We prove the existence of the curvature invariant and present some of its basic properties. A distinguished role as a universal model among the pure elements in ${\mathcal U}$-twisted polyballs is played by the standard $I\otimes{\mathcal U}$-twisted multi-shift S acting on $\ell^2({\mathbb F}_{n_1}^+\times\cdots\times {\mathbb F}_{n_k}^+)\otimes {\mathcal H}$. The curvature invariant $\mathrm{curv} (A)$ can be any non-negative real number and measures the amount by which A deviates from the universal model S. Special attention is given to the $I\otimes {\mathcal U}$-twisted multi-shift S and the invariant subspaces (co-invariant) under S and $I\otimes {\mathcal U}$, due to the fact that any pure element $A\in B^{\mathcal U}({\mathcal H})$ with $\Delta_A(I)\geq 0$ is the compression of S to such a co-invariant subspace.
Given any unital, finite, classifiable $\mathrm{C}^*$-algebra A with real rank zero and any compact simplex bundle with the fibre at zero being homeomorphic to the space of tracial states on A, we show that there exists a flow on A realizing this simplex. Moreover, we show that given any unital $\mathrm{UCT}$ Kirchberg algebra A and any proper simplex bundle with empty fibre at zero, there exists a flow on A realizing this simplex.
In this paper, we investigate Kolmogorov-type theorems for small perturbations of degenerate Hamiltonian systems. These systems are index by a parameter ξ as $ H(y,x,\xi) = \langle\omega(\xi),y\rangle {+ \bar h(y,\xi)}+\varepsilon P(y,x,\xi,\varepsilon) $, where ɛ > 0. We assume that the frequency mapping $\omega(\cdot)$, $\bar h(y,\cdot)=O(|y|^2)$ and the perturbation $\varepsilon P(y,x,\cdot, \varepsilon)$ maintain Hölder continuity about ξ. We prove that the persistent invariant tori retain the same frequency as those of the unperturbed tori, under a certain topological degree condition and a weak convexity condition for the frequency mapping. Notably, this paper presents, to our understanding, pioneering results on the KAM theorem under such conditions with only assumption of Hölder continuous dependence of frequency mapping ω on the parameter.
Well-posedness in time-weighted spaces of certain quasilinear (and semilinear) parabolic evolution equations $u'=A(u)u+f(u)$ is established. The focus lies on the case of strict inclusions $\mathrm{dom}(f)\subsetneq \mathrm{dom}(A)$ of the domains of the nonlinearities $u\mapsto f(u)$ and $u\mapsto A(u)$. Based on regularizing effects of parabolic equations it is shown that a semiflow is generated in intermediate spaces. In applications this allows one to derive global existence from weaker a priori estimates. The result is illustrated by examples of chemotaxis systems.
For commuting contractions $T_1,\dots,T_n$ acting on a Hilbert space $\mathscr{H}$ with $T=\prod_{i=1}^n T_i$, we find a necessary and sufficient condition such that $(T_1,\dots,T_n)$ dilates to a commuting tuple of isometries $(V_1,\dots,V_n)$ on the minimal isometric dilation space of T with $V=\prod_{i=1}^nV_i$ being the minimal isometric dilation of T. This isometric dilation provides a commutant lifting of $(T_1, \dots, T_n)$ on the minimal isometric dilation space of T. We construct both Schäffer and Sz. Nagy–Foias-type isometric dilations for $(T_1,\dots,T_n)$ on the minimal dilation spaces of T. Also, a different dilation is constructed when the product T is a $C._0$ contraction, that is, ${T^*}^n \rightarrow 0$ as $n \rightarrow \infty$. As a consequence of these dilation theorems, we obtain different functional models for $(T_1,\dots,T_n)$ in terms of multiplication operators on vectorial Hardy spaces. One notable fact about our models is that the multipliers are all analytic functions in one variable. The dilation when T is a $C._0$ contraction leads to a conditional factorization of T. Several examples have been constructed.
We study the geometry of tropical extensions of hyperfields, including the ordinary, signed, and complex tropical hyperfields. We introduce the framework of ‘enriched valuations’ as hyperfield homomorphisms to tropical extensions and show that a notable family of them are relatively algebraically closed. Our main results are hyperfield analogues of Kapranov’s theorem and the Fundamental theorem of tropical geometry. Utilizing these theorems, we introduce fine tropical varieties and prove a structure theorem for them in terms of their initial ideals.
In this paper, we define and study an equivariant analogue of Cohen, Farber and Weinberger’s parametrized topological complexity. We show that several results in the non-equivariant case can be extended to the equivariant case. For example, we establish the fibrewise equivariant homotopy invariance of the sequential equivariant parametrized topological complexity. We obtain several bounds on sequential equivariant topological complexity involving the equivariant category. We also obtain the cohomological lower bound and the dimension-connectivity upper bound on the sequential equivariant parametrized topological complexity. In the end, we use these results to compute the sequential equivariant parametrized topological complexity of equivariant Fadell–Neuwirth fibrations and some equivariant fibrations involving generalized projective product spaces.
We establish new results on complex and $p$-adic linear independence on a class of semiabelian varieties. As applications, we obtain transcendence results concerning complex and $p$-adic Weierstrass sigma functions associated with elliptic curves.
We prove interior boundedness and Hölder continuity for the weak solutions of nonlocal double phase equations in the Heisenberg group $\mathbb{H}^n$. This solves a problem raised by Palatucci and Piccinini et al. in 2022 and 2023 for the nonlinear integro-differential problems in Heisenberg setting. Our proof of the a priori estimates bases on De Giorgi–Nash–Moser theory, where the important ingredients are Caccioppoli-type inequality and Logarithmic estimate. To achieve this goal, we establish a new and crucial Sobolev–Poincaré type inequality in local domain, which may be of independent interest and potential applications.
In [CDD22], we investigated the structure of $\ast $-isomorphisms between von Neumann algebras $L(\Gamma )$ associated with graph product groups $\Gamma $ of flower-shaped graphs and property (T) wreath-like product vertex groups, as in [CIOS21]. In this follow-up, we continue the structural study of these algebras by establishing that these graph product groups $\Gamma $ are entirely recognizable from the category of all von Neumann algebras arising from an arbitrary nontrivial graph product group with infinite vertex groups. A sharper $C^*$-algebraic version of this statement is also obtained. In the process of proving these results, we also extend the main $W^*$-superrigidity result from [CIOS21] to direct products of property (T) wreath-like product groups.
In network science, one of the significant and challenging subjects is the detection of communities. Modularity [1] is a measure of community structure that compares connectivity in the network with the expected connectivity in a graph sampled from a random null model. Its optimisation is a common approach to tackle the community detection problem. We present a new method for modularity maximisation, which is based on the observation that modularity can be expressed in terms of total variation on the graph and signless total variation on the null model. The resulting algorithm is of Merriman–Bence–Osher (MBO) type. Different from earlier methods of this type, the new method can easily accommodate different choices of the null model. Besides theoretical investigations of the method, we include in this paper numerical comparisons with other community detection methods, among which the MBO-type methods of Hu et al. [2] and Boyd et al. [3], and the Leiden algorithm [4].
We study Morita equivalence for idempotent rings with involution. Following the ideas of Rieffel, we define Rieffel contexts, and we also introduce Morita $*$-contexts and enlargements for rings with involution. We prove that two idempotent rings with involution have a joint enlargement if and only if they are connected by a unitary and full Rieffel context. These conditions are also equivalent to having a unitary and surjective Morita $*$-context between those rings. We also examine how the mentioned conditions are connected to the existence of certain equivalence functors between the categories of firm modules over the given rings with involution.
In this work, the Riemann–Hilbert (RH) problem is employed to study the multiple high-order pole solutions of the cubic Camassa–Holm (cCH) equation with the term characterizing the effect of linear dispersion under zero boundary conditions and nonzero boundary conditions. Under the reflectionless situation, we generalize the residue theorem and obtain the multiple high-order pole solutions of cCH equation by solving an algebraic system. During the process of establishing the solution of RH problem, to simplify the calculations involving the implicitly expressed of variables (x, t) in the solution, we introduce a new scale (y, t) to ensure the solution of RH problem is explicitly expressed with respect to it. Finally, the exact solutions are obtained for cases involving one high-order pole and N high-order poles.
We present a one-parameter family Fλ of transcendental entire functions with zeros, whose Newton’s method yields wandering domains, coexisting with the basins of the roots of Fλ. Wandering domains for Newton maps of zero-free functions have been built before by, e.g. Buff and Rückert [23] based on the lifting method. This procedure is suited to our Newton maps as members of the class of projectable functions (or maps of the cylinder), i.e. transcendental meromorphic functions f(z) in the complex plane that are semiconjugate, via the exponential, to some map g(w), which may have at most a countable number of essential singularities. In this paper, we make a systematic study of the general relation (dynamical and otherwise) between f and g, and inspect the extension of the logarithmic lifting method of periodic Fatou components to our context, especially for those g of finite-type. We apply these results to characterize the entire functions with zeros whose Newton’s method projects to some map g which is defined at both 0 and $\infty$. The family Fλ is the simplest in this class, and its parameter space shows open sets of λ-values in which the Newton map exhibits wandering or Baker domains, in both cases regions of initial conditions where Newton’s root-findingmethod fails.
The article studies an initial boundary valueproblem (ibvp) for the radial solutions of the nonlinear Schrödinger (NLS) equation in a radially symmetric region $\Omega\in \mathbb R^n$ with boundaries. All such regions can be classified into three types: a ball Ω0 centred at origin, a region Ω1 outside a ball, and an n-dimensional annulus Ω2. To study the well-posedness of those ibvps, the function spaces for the boundary data must be specified in terms of the solutions in appropriate Sobolev spaces. It is shown that when $\Omega = \Omega_1$, the ibvp for the NLS equation is locally well-posed in $ C( [0, T^*]; H^s(\Omega_1))$ if the initial data is in $H^s(\Omega_1)$ and boundary data is in $ H^{\frac{2s+1}{4}}(0, T)$ with $s \geq 0$. This is the optimal regularity for the boundary data and cannot be improved. When $\Omega = \Omega_2$, the ibvp is locally well-posed in $ C( [0, T^*]; H^s(\Omega_2))$ if the initial data is in $ H^s(\Omega_2)$ and boundary data is in $ H^{\frac{s+1}{2}}(0, T)$ with $s \geq 0$. In this case, the boundary data requires $1/4$ more derivative compared to the case when $\Omega = \Omega_1$. When $\Omega = \Omega_0$ with n = 2 (the case with n > 2 can be discussed similarly), the ibvp is locally well-posed in $ C( [0, T^*]; H^s(\Omega_0))$ if the initial data is in $ H^s(\Omega_0)$ and boundary data is in $ H^{\frac{s+1}{2}}(0, T)$ with s > 1 (or $s \gt n/2$). Due to the lack of Strichartz estimates for the corresponding boundary integral operator with $ 0 \leq s \leq 1$, the local well-posedness can only be achieved for s > 1. It is noted that the well-posedness results on Ω0 and Ω2 are the first ones for the ibvp of NLS equations in bounded regions of higher dimension.
Let $L=-\Delta +V$ be a Schrödinger operator in ${\mathbb R}^n$ with $n\geq 3$, where $\Delta $ is the Laplace operator denoted by $\Delta =\sum ^{n}_{i=1}({\partial ^{2}}/{\partial x_{i}^{2}})$ and the nonnegative potential V belongs to the reverse Hölder class $(RH)_{q}$ with $q>n/2$. For $\alpha \in (0,1)$, we define the operator
where $\{e^{-tL^\alpha } \}_{t>0}$ is the fractional heat semigroup of the operator L, $\{v_j\}_{j\in \mathbb Z}$ is a bounded real sequence and $\{a_j\}_{j\in \mathbb Z}$ is an increasing real sequence.
We investigate the boundedness of the operator $T_N^{L^{\alpha }}$ and the related maximal operator $T^*_{L^{\alpha }}f(x):=\sup _N \vert T_N^{L^{\alpha }} f(x)\vert $ on the spaces $L^{p}(\mathbb {R}^{n})$ and $BMO_{L}(\mathbb {R}^{n})$, respectively. As extensions of $L^{p}(\mathbb {R}^{n})$, the boundedness of the operators $T_N^{L^{\alpha }}$ and $T^*_{L^{\alpha }}$ on the Morrey space $L^{\rho ,\theta }_{p,\kappa }(\mathbb {R}^{n})$ and the weak Morrey space $WL^{\rho ,\theta }_{1,\kappa }(\mathbb {R}^{n})$ has also been proved.
We give a simple sufficient condition for Quinn’s ‘bordism-type’ spectra to be weakly equivalent to commutative symmetric ring spectra. We also show that the symmetric signature is (up to weak equivalence) a monoidal transformation between symmetric monoidal functors, which implies that the Sullivan–Ranicki orientation of topological bundles is represented by a ring map between commutative symmetric ring spectra. In the course of proving these statements, we give a new description of symmetric L theory which may be of independent interest.
We study global-in-time dynamics of the stochastic nonlinear beam equations (SNLB) with an additive space-time white noise, posed on the four-dimensional torus. The roughness of the noise leads us to introducing a time-dependent renormalization, after which we show that SNLB is pathwise locally well-posed in all subcritical and most of the critical regimes. For the (renormalized) defocusing cubic SNLB, we establish pathwise global well-posedness below the energy space, by adapting a hybrid argument of Gubinelli-Koch-Oh-Tolomeo (2022) that combines the I-method with a Gronwall-type argument. Lastly, we show almost sure global well-posedness and invariance of the Gibbs measure for the stochastic damped nonlinear beam equations in the defocusing case.
where ɛ is apositive parameter, $0 \lt s \lt 1$, $2 \leqslant p \lt q \lt \min\{2p, N / s\}$, $0 \lt \mu \lt sp$, $(- \Delta)_t^s$$(t \in \left\{p,q\right\})$ is the fractional t-Laplace operator, the reaction term $f : \mathbb{R} \mapsto \mathbb{R}$ is continuous, and the potential $V \in C (\mathbb{R}^N , \mathbb{R})$ satisfying a local condition. Using a variational approach and topological tools (the non-standard C1-Nehari manifold analysis and the abstract category theory), multiplicity of positive solutions and concentration properties for the above problem are established. Our results extend and complement some previous contributions related to double phase variational integrals.