We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The global analogue of a Henselian local ring is a Henselian pair – a ring R and an ideal I which satisfy a condition resembling Hensel’s lemma regarding lifting coprime factorizations of monic polynomials over $R/I$ to factorizations over R. The geometric counterpart is the notion of a Henselian scheme, which can serve as a substitute for formal schemes in applications such as deformation theory.
In this paper, we prove a GAGA-style cohomology comparison result for Henselian schemes in positive characteristic, making use of a ‘Henselian étale’ topology defined in previous work in order to leverage exactness of finite pushforward for abelian sheaves in the étale topology of schemes. We will also discuss algebraizability of coherent sheaves on the Henselization of a proper scheme, proving (without a positive characteristic restriction) algebraizability for coherent subsheaves. We can then deduce a Henselian version of Chow’s theorem on algebraization and the algebraizability of maps between Henselizations of proper schemes.
Let R be a discrete valuation ring of field of fractions K and of residue field k of characteristic $p> 0$. In an earlier work, we studied the question of extending torsors over K-curves into torsors over R-regular models of the curves in the case when the structural K-group scheme of the torsor admits a finite flat model over R. In this paper, we first give a simpler description of the problem in the case where the curve is semistable using recent work in Holmes, Molcho, Orecchia, and Poiret (2023, Journal für die Reine und Angewandte Mathematik [Crelle’s Journal] 230, 115–159) and Molcho and Wise (2022, Compositio Mathematica 158, 1477–1562). Second, if R is assumed to be Henselian and Japanese, we solve the problem of extending torsors by combining our previous work together with results in Antei and Emsalem (2018, Nagoya Mathematical Journal 230, 18–34) and Phung and Dos Santos (2023, Algebraic Geometry 230, 1–40), including the case where the structural group does not admit a finite flat R-model.
Dirac rings are commutative algebras in the symmetric monoidal category of $\mathbb {Z}$-graded abelian groups with the Koszul sign in the symmetry isomorphism. In the prequel to this paper, we developed the commutative algebra of Dirac rings and defined the category of Dirac schemes. Here, we embed this category in the larger $\infty $-category of Dirac stacks, which also contains formal Dirac schemes, and develop the coherent cohomology of Dirac stacks. We apply the general theory to stable homotopy theory and use Quillen’s theorem on complex cobordism and Milnor’s theorem on the dual Steenrod algebra to identify the Dirac stacks corresponding to $\operatorname {MU}$ and $\mathbb {F}_p$ in terms of their functors of points. Finally, in an appendix, we develop a rudimentary theory of accessible presheaves.
Let G be a group and let V be an algebraic variety over an algebraically closed field K. Let A denote the set of K-points of V. We introduce algebraic sofic subshifts ${\Sigma \subset A^G}$ and study endomorphisms $\tau \colon \Sigma \to \Sigma $. We generalize several results for dynamical invariant sets and nilpotency of $\tau $ that are well known for finite alphabet cellular automata. Under mild assumptions, we prove that $\tau $ is nilpotent if and only if its limit set, that is, the intersection of the images of its iterates, is a singleton. If moreover G is infinite, finitely generated and $\Sigma $ is topologically mixing, we show that $\tau $ is nilpotent if and only if its limit set consists of periodic configurations and has a finite set of alphabet values.
In this article, we construct some examples of noncommutative projective Calabi–Yau schemes by using noncommutative Segre products and quantum weighted hypersurfaces. We also compare our constructions with commutative Calabi–Yau varieties and examples constructed in Kanazawa (2015, Journal of Pure and Applied Algebra 219, 2771–2780). In particular, we show that some of our constructions are essentially new examples of noncommutative projective Calabi–Yau schemes.
We show that relative Calabi–Yau structures on noncommutative moment maps give rise to (quasi-)bisymplectic structures, as introduced by Crawley-Boevey–Etingof–Ginzburg (in the additive case) and Van den Bergh (in the multiplicative case). We prove along the way that the fusion process (a) corresponds to the composition of Calabi–Yau cospans with ‘pair-of-pants’ ones and (b) preserves the duality between non-degenerate double quasi-Poisson structures and quasi-bisymplectic structures.
As an application, we obtain that Van den Bergh’s Poisson structures on the moduli spaces of representations of deformed multiplicative preprojective algebras coincide with the ones induced by the $2$-Calabi–Yau structures on (dg-versions of) these algebras.
We consider a Deligne–Mumford stack $X$ which is the quotient of an affine scheme $\operatorname {Spec}A$ by the action of a finite group $G$ and show that the Balmer spectrum of the tensor triangulated category of perfect complexes on $X$ is homeomorphic to the space of homogeneous prime ideals in the group cohomology ring $H^*(G,A)$.
One fundamental consequence of a scheme $X$ being proper is that the functor classifying maps from $X$ to any other suitably nice scheme or algebraic stack is representable by an algebraic stack. This result has been generalized by replacing $X$ with a proper algebraic stack. We show, however, that it also holds when $X$ is replaced by many examples of algebraic stacks which are not proper, including many global quotient stacks. This leads us to revisit the definition of properness for stacks. We introduce the notion of a formally proper morphism of stacks and study its properties. We develop methods for establishing formal properness in a large class of examples. Along the way, we prove strong $h$-descent results which hold in the setting of derived algebraic geometry but not in classical algebraic geometry. Our main applications are algebraicity results for mapping stacks and the stack of coherent sheaves on a flat and formally proper stack.
We study the Rouquier dimension of wrapped Fukaya categories of Liouville manifolds and pairs, and apply this invariant to various problems in algebraic and symplectic geometry. On the algebro-geometric side, we introduce a new method based on symplectic flexibility and mirror symmetry to bound the Rouquier dimension of derived categories of coherent sheaves on certain complex algebraic varieties and stacks. These bounds are sharp in dimension at most $3$. As an application, we resolve a well-known conjecture of Orlov for new classes of examples (e.g. toric $3$-folds, certain log Calabi–Yau surfaces). We also discuss applications to non-commutative motives on partially wrapped Fukaya categories. On the symplectic side, we study various quantitative questions including the following. (1) Given a Weinstein manifold, what is the minimal number of intersection points between the skeleton and its image under a generic compactly supported Hamiltonian diffeomorphism? (2) What is the minimal number of critical points of a Lefschetz fibration on a Liouville manifold with Weinstein fibers? We give lower bounds for these quantities which are to the best of the authors’ knowledge the first to go beyond the basic flexible/rigid dichotomy.
We establish a Hirzebruch–Riemann–Roch-type theorem and a Grothendieck–Riemann–Roch-type theorem for matrix factorizations on quotient Deligne–Mumford stacks. For this, we first construct a Hochschild–Kostant–Rosenberg-type isomorphism explicit enough to yield a categorical Chern character formula. Then, we find an expression of the canonical pairing of Shklyarov under the isomorphism.
A twisting system is one of the major tools to study graded algebras; however, it is often difficult to construct a (nonalgebraic) twisting system if a graded algebra is given by generators and relations. In this paper, we show that a twisted algebra of a geometric algebra is determined by a certain automorphism of its point variety. As an application, we classify twisted algebras of three-dimensional geometric Artin–Schelter regular algebras up to graded algebra isomorphism.
It was established by Boalch that Euler continuants arise as Lie group valued moment maps for a class of wild character varieties described as moduli spaces of points on
$\mathbb {P}^1$
by Sibuya. Furthermore, Boalch noticed that these varieties are multiplicative analogues of certain Nakajima quiver varieties originally introduced by Calabi, which are attached to the quiver
$\Gamma _n$
on two vertices and n equioriented arrows. In this article, we go a step further by unveiling that the Sibuya varieties can be understood using noncommutative quasi-Poisson geometry modelled on the quiver
$\Gamma _n$
. We prove that the Poisson structure carried by these varieties is induced, via the Kontsevich–Rosenberg principle, by an explicit Hamiltonian double quasi-Poisson algebra defined at the level of the quiver
$\Gamma _n$
such that its noncommutative multiplicative moment map is given in terms of Euler continuants. This result generalises the Hamiltonian double quasi-Poisson algebra associated with the quiver
$\Gamma _1$
by Van den Bergh. Moreover, using the method of fusion, we prove that the Hamiltonian double quasi-Poisson algebra attached to
$\Gamma _n$
admits a factorisation in terms of n copies of the algebra attached to
$\Gamma _1$
.
We study the symplectic geometry of derived intersections of Lagrangian morphisms. In particular, we show that for a functional $f : X \rightarrow \mathbb {A}_{k}^{1}$, the derived critical locus has a natural Lagrangian fibration $\textbf {Crit}(f) \rightarrow X$. In the case where f is nondegenerate and the strict critical locus is smooth, we show that the Lagrangian fibration on the derived critical locus is determined by the Hessian quadratic form.
We show that the image of a subshift X under various injective morphisms of symbolic algebraic varieties over monoid universes with algebraic variety alphabets is a subshift of finite type, respectively a sofic subshift, if and only if so is X. Similarly, let G be a countable monoid and let A, B be Artinian modules over a ring. We prove that for every closed subshift submodule $\Sigma \subset A^G$ and every injective G-equivariant uniformly continuous module homomorphism $\tau \colon \! \Sigma \to B^G$, a subshift $\Delta \subset \Sigma $ is of finite type, respectively sofic, if and only if so is the image $\tau (\Delta )$. Generalizations for admissible group cellular automata over admissible Artinian group structure alphabets are also obtained.
We show that there is an extra grading in the mirror duality discovered in the early nineties by Greene–Plesser and Berglund–Hübsch. Their duality matches cohomology classes of two Calabi–Yau orbifolds. When both orbifolds are equipped with an automorphism s of the same order, our mirror duality involves the weight of the action of $s^*$ on cohomology. In particular it matches the respective s-fixed loci, which are not Calabi–Yau in general. When applied to K3 surfaces with nonsymplectic automorphism s of odd prime order, this provides a proof that Berglund–Hübsch mirror symmetry implies K3 lattice mirror symmetry replacing earlier case-by-case treatments.
A celebrated result by Orlov states that any fully faithful exact functor between the bounded derived categories of coherent sheaves on smooth projective varieties is of geometric origin, i.e. it is a Fourier–Mukai functor. In this paper we prove that any smooth projective variety of dimension $\ge 3$ equipped with a tilting bundle can serve as the source variety of a non-Fourier–Mukai functor between smooth projective schemes.
We construct and study some vertex theoretic invariants associated with Poisson varieties, specializing in the conformal weight
$0$
case to the familiar package of Poisson homology and cohomology. In order to do this conceptually, we sketch a version of the calculus, in the sense of [12], adapted to the context of vertex algebras. We obtain the standard theorems of Poisson (co)homology in this chiral context. This is part of a larger project related to promoting noncommutative geometric structures to chiral versions of such.
We formulate a version of the integral Hodge conjecture for categories, prove the conjecture for two-dimensional Calabi–Yau categories which are suitably deformation equivalent to the derived category of a K3 or abelian surface, and use this to deduce cases of the usual integral Hodge conjecture for varieties. Along the way, we prove a version of the variational integral Hodge conjecture for families of two-dimensional Calabi–Yau categories, as well as a general smoothness result for relative moduli spaces of objects in such families. Our machinery also has applications to the structure of intermediate Jacobians, such as a criterion in terms of derived categories for when they split as a sum of Jacobians of curves.
Let $L$ be a very ample line bundle on a projective scheme $X$ defined over an algebraically closed field $\Bbbk$ with ${\rm char}\,\Bbbk \neq 2$. We say that $(X,L)$ satisfies property $\mathsf {QR}(k)$ if the homogeneous ideal of the linearly normal embedding $X \subset {\mathbb {P}} H^{0} (X,L)$ can be generated by quadrics of rank less than or equal to $k$. Many classical varieties, such as Segre–Veronese embeddings, rational normal scrolls and curves of high degree, satisfy property $\mathsf {QR}(4)$. In this paper, we first prove that if ${\rm char}\,\Bbbk \neq 3$ then $({\mathbb {P}}^{n} , \mathcal {O}_{{\mathbb {P}}^{n}} (d))$ satisfies property $\mathsf {QR}(3)$ for all $n \geqslant 1$ and $d \geqslant 2$. We also investigate the asymptotic behavior of property $\mathsf {QR}(3)$ for any projective scheme. Specifically, we prove that (i) if $X \subset {\mathbb {P}} H^{0} (X,L)$ is $m$-regular then $(X,L^{d} )$ satisfies property $\mathsf {QR}(3)$ for all $d \geqslant m$, and (ii) if $A$ is an ample line bundle on $X$ then $(X,A^{d} )$ satisfies property $\mathsf {QR}(3)$ for all sufficiently large even numbers $d$. These results provide affirmative evidence for the expectation that property $\mathsf {QR}(3)$ holds for all sufficiently ample line bundles on $X$, as in the cases of Green and Lazarsfeld's condition $\mathrm {N}_p$ and the Eisenbud–Koh–Stillman determininantal presentation in Eisenbud et al. [Determinantal equations for curves of high degree, Amer. J. Math. 110 (1988), 513–539]. Finally, when ${\rm char}\,\Bbbk = 3$ we prove that $({\mathbb {P}}^{n} , \mathcal {O}_{{\mathbb {P}}^{n}} (2))$ fails to satisfy property $\mathsf {QR}(3)$ for all $n \geqslant 3$.
Building upon work of Epstein, May and Drury, we define and investigate the mod p Steenrod operations on the de Rham cohomology of smooth algebraic stacks over a field of characteristic
$p>0$
. We then compute the action of the operations on the de Rham cohomology of classifying stacks for finite groups, connected reductive groups for which p is not a torsion prime and (special) orthogonal groups when
$p=2$
.