We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Boundary points on the moduli space of pointed curves corresponding to collisions of marked points have modular interpretations as degenerate curves. In this paper, we study degenerations of orbifold projective curves corresponding to collisions of stacky points from the point of view of noncommutative algebraic geometry.
A dimer model is a quiver with faces embedded in a surface. We define and investigate notions of consistency for dimer models on general surfaces with boundary which restrict to well-studied consistency conditions in the disk and torus case. We define weak consistency in terms of the associated dimer algebra and show that it is equivalent to the absence of bad configurations on the strand diagram. In the disk and torus case, weakly consistent models are nondegenerate, meaning that every arrow is contained in a perfect matching; this is not true for general surfaces. Strong consistency is defined to require weak consistency as well as nondegeneracy. We prove that the completed as well as the noncompleted dimer algebra of a strongly consistent dimer model are bimodule internally 3-Calabi-Yau with respect to their boundary idempotents. As a consequence, the Gorenstein-projective module category of the completed boundary algebra of suitable dimer models categorifies the cluster algebra given by their underlying quiver. We provide additional consequences of weak and strong consistency, including that one may reduce a strongly consistent dimer model by removing digons and that consistency behaves well under taking dimer submodels.
We show that the cohomological Brauer groups of the moduli stacks of stable genus g curves over the integers and an algebraic closure of the rational numbers vanish for any $g\geq 2$. For the n marked version, we show the same vanishing result in the range $(g,n)=(1,n)$ with $1\leq n \leq 6$ and all $(g,n)$ with $g\geq 4.$ We also discuss several finiteness results on cohomological Brauer groups of proper and smooth Deligne-Mumford stacks over the integers.
We construct moduli spaces of framed logarithmic connections and also moduli spaces of framed parabolic connections. It is shown that these moduli spaces possess a natural algebraic symplectic structure. We also give an upper bound of the transcendence degree of the algebra of regular functions on the moduli space of parabolic connections.
Let S be a minimal irregular surface of general type, whose Albanese map induces a hyperelliptic fibration $f:\,S \to B$ of genus g. We prove a quadratic upper bound on the genus g (i.e., $g\leq h\big (\chi (\mathcal {O}_S)\big )$, where h is a quadratic function). We also construct examples showing that the quadratic upper bounds cannot be improved to linear ones. In the special case when $p_g(S)=q(S)=1$, we show that $g\leq 14$.
Let $X$ be a compact Riemann surface. Let $(E,\theta )$ be a stable Higgs bundle of degree $0$ on $X$. Let $h_{\det (E)}$ denote a flat metric of the determinant bundle $\det (E)$. For any $t\gt 0$, there exists a unique harmonic metric $h_t$ of $(E,t\theta )$ such that $\det (h_t)=h_{\det (E)}$. We prove that if the Higgs bundle is induced by a line bundle on the normalization of the spectral curve, then the sequence $h_t$ is convergent to the naturally defined decoupled harmonic metric at the speed of the exponential order. We also obtain a uniform convergence for such a family of Higgs bundles.
We define kappa classes on moduli spaces of Kollár-Shepherd-Barron-Alexeev (KSBA)-stable varieties and pairs, generalizing the Miller–Morita–Mumford classes on moduli of curves, and computing them in some cases where the virtual fundamental class is known to exist, including Burniat and Campedelli surfaces. For Campedelli surfaces, an intermediate step is finding the Chow (same as cohomology) ring of the GIT quotient $(\mathbb {P}^2)^7//SL(3)$.
For a smooth projective surface $X$ satisfying $H_1(X,\mathbb{Z}) = 0$ and $w \in H^2(X,\mu _r)$, we study deformation invariants of the pair $(X,w)$. Choosing a Brauer–Severi variety $Y$ (or, equivalently, Azumaya algebra $\mathcal{A}$) over $X$ with Stiefel–Whitney class $w$, the invariants are defined as virtual intersection numbers on suitable moduli spaces of stable twisted sheaves on $Y$ constructed by Yoshioka (or, equivalently, moduli spaces of $\mathcal{A}$-modules of Hoffmann–Stuhler).
We show that the invariants do not depend on the choice of $Y$. Using a result of de Jong, we observe that they are deformation invariants of the pair $(X,w)$. For surfaces with $h^{2,0}(X) \gt 0$, we show that the invariants can often be expressed as virtual intersection numbers on Gieseker–Maruyama–Simpson moduli spaces of stable sheaves on $X$. This can be seen as a ${\rm PGL}_r$–${\rm SL}_r$ correspondence.
As an application, we express ${\rm SU}(r) / \mu _r$ Vafa–Witten invariants of $X$ in terms of ${\rm SU}(r)$ Vafa–Witten invariants of $X$. We also show how formulae from Donaldson theory can be used to obtain upper bounds for the minimal second Chern class of Azumaya algebras on $X$ with given division algebra at the generic point.
We introduce a double framing construction for moduli spaces of quiver representations. This allows us to reduce certain sheaf cohomology computations involving the universal representation, to computations involving line bundles, making them amenable to methods from geometric invariant theory. We will use this to show that in many good situations the vector fields on the moduli space are isomorphic as vector spaces to the first Hochschild cohomology of the path algebra. We also show that considering the universal representation as a Fourier–Mukai kernel in the appropriate sense gives an admissible embedding of derived categories.
We study the rationality properties of the moduli space ${\mathcal{A}}_g$ of principally polarised abelian $g$-folds over $\mathbb{Q}$ and apply the results to arithmetic questions. In particular, we show that any principally polarised abelian 3-fold over ${\mathbb{F}}_p$ may be lifted to an abelian variety over $\mathbb{Q}$. This is a phenomenon of low dimension: assuming the Bombieri–Lang conjecture, we also show that this is not the case for abelian varieties of dimension at least 7. Concerning moduli spaces, we show that ${\mathcal{A}}_g$ is unirational over $\mathbb{Q}$ for $g\le 5$ and stably rational for $g=3$. This also allows us to make unconditional one of the results of Masser and Zannier about the existence of abelian varieties over $\mathbb{Q}$ that are not isogenous to Jacobians.
We describe a geometric, stable pair compactification of the moduli space of Enriques surfaces with a numerical polarization of degree $2$, and identify it with a semitoroidal compactification of the period space.
We study the period map of configurations of n points on the projective line constructed via a cyclic cover branching along these points. By considering the decomposition of its Hodge structure into eigenspaces, we establish the codimension of the locus where the eigenperiod map is still pure. Furthermore, we show that the period map extends to the divisors of a specific moduli space of weighted stable rational curves, and that this extension satisfies a local Torelli map along its fibers.
In 2002, Fukaya [19] proposed a remarkable explanation of mirror symmetry detailing the Strominger–Yau–Zaslow (SYZ) conjecture [47] by introducing two correspondences: one between the theory of pseudo-holomorphic curves on a Calabi–Yau manifold $\check {X}$ and the multivalued Morse theory on the base $\check {B}$ of an SYZ fibration $\check {p}\colon \check {X}\to \check {B}$, and the other between deformation theory of the mirror X and the same multivalued Morse theory on $\check {B}$. In this paper, we prove a reformulation of the main conjecture in Fukaya’s second correspondence, where multivalued Morse theory on the base $\check {B}$ is replaced by tropical geometry on the Legendre dual B. In the proof, we apply techniques of asymptotic analysis developed in [7, 9] to tropicalize the pre-dgBV algebra which governs smoothing of a maximally degenerate Calabi–Yau log variety introduced in [8]. Then a comparison between this tropicalized algebra with the dgBV algebra associated to the deformation theory of the semiflat part $X_{\mathrm {sf}} \subset X$ allows us to extract consistent scattering diagrams from appropriate Maurer–Cartan solutions.
Building upon the classification by Lacini, we determine the isomorphism classes of log del Pezzo surfaces of rank one over an algebraically closed field of characteristic five either which are not log liftable over the ring of Witt vectors or whose singularities are not feasible in characteristic zero. We also show that such a surface is always constructed from the Du Val del Pezzo surface of Dynkin type $2[2^4]$. Furthermore, We show that the Kawamata–Viehweg vanishing theorem for ample $\mathbb {Z}$-Weil divisors holds for log del Pezzo surfaces of rank one in characteristic five if those singularities are feasible in characteristic zero.
We geometrize the mod p Satake isomorphism of Herzig and Henniart–Vignéras using Witt vector affine flag varieties for reductive groups in mixed characteristic. We deduce this as a special case of a formula, stated in terms of the geometry of generalized Mirković–Vilonen cycles, for the Satake transform of an arbitrary parahoric mod p Hecke algebra with respect to an arbitrary Levi subgroup. Moreover, we prove an explicit formula for the convolution product in an arbitrary parahoric mod p Hecke algebra. Our methods involve the constant term functors inspired from the geometric Langlands program, and we also treat the case of reductive groups in equal characteristic. We expect this to be a first step toward a geometrization of a mod p Local Langlands Correspondence.
We analyze infinitesimal deformations of morphisms of locally free sheaves on a smooth projective variety X over an algebraically closed field of characteristic zero. In particular, we describe a differential graded Lie algebra controlling the deformation problem. As an application, we study infinitesimal deformations of the pairs given by a locally free sheaf and a subspace of its sections with a view toward Brill-Noether theory.
We exhibit large families of K3 surfaces with real multiplication, both abstractly, using lattice theory, the Torelli theorem and the surjectivity of the period map, as well as explicitly, using dihedral covers and isogenies.
We prove the existence of a power structure over the Grothendieck ring of geometric dg categories. We show that a conjecture by Galkin and Shinder (proved recently by Bergh, Gorchinskiy, Larsen and Lunts) relating the motivic and categorical zeta functions of varieties can be reformulated as a compatibility between the motivic and categorical power structures. Using our power structure, we show that the categorical zeta function of a geometric dg category can be expressed as a power with exponent the category itself. We give applications of our results for the generating series associated with Hilbert schemes of points, categorical Adams operations and series with exponent a linear algebraic group.
Fujino gave a proof for the semi-ampleness of the moduli part in the canonical bundle formula in the case when the general fibers are K3 surfaces or abelian varieties. We show a similar statement when the general fibers are primitive symplectic varieties. This answers a question of Fujino raised in the same article. Moreover, using the structure theory of varieties with trivial first Chern class, we reduce the question of semi-ampleness in the case of families of K-trivial varieties to a question when the general fibers satisfy a slightly weaker Calabi–Yau condition.
We compute odd-degree genus 1 quasimap and Gromov–Witten invariants of moduli spaces of Higgs ${\rm{S}}{{\rm{L}}_2}$-bundles on a curve of genus $g \geqslant 2$. We also compute certain invariants for all prime ranks. This proves some parts of the author’s conjectures on quasimap invariants of moduli spaces of Higgs bundles. More generally, our methods provide a computation scheme for genus 1 quasimap and Gromov–Witten invariants in the case when degrees of maps are coprime to the rank. This requires an analysis of the localisation formula for certain Quot schemes parametrising higher-rank quotients on an elliptic curve. Invariants for degrees that are not coprime to the rank exhibit a very different structure for a reason that we explain.