We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In 1977, Gauduchon proved that on every compact hermitian manifold $(X, \omega )$ there exists a conformally equivalent hermitian metric $\omega _\mathrm {G}$ which satisfies $\mathrm {dd}^{\mathrm {c}} \omega _\mathrm {G}^{n-1} = 0$. In this note, we extend this result to irreducible compact singular hermitian varieties which admit a smoothing.
We study the p-rank stratification of the moduli space of cyclic degree
$\ell $
covers of the projective line in characteristic p for distinct primes p and
$\ell $
. The main result is about the intersection of the p-rank
$0$
stratum with the boundary of the moduli space of curves. When
$\ell =3$
and
$p \equiv 2 \bmod 3$
is an odd prime, we prove that there exists a smooth trielliptic curve in characteristic p, for every genus g, signature type
$(r,s)$
, and p-rank f satisfying the clear necessary conditions.
Let $X/\mathbb {F}_{q}$ be a smooth, geometrically connected, quasi-projective scheme. Let $\mathcal {E}$ be a semi-simple overconvergent $F$-isocrystal on $X$. Suppose that irreducible summands $\mathcal {E}_i$ of $\mathcal {E}$ have rank 2, determinant $\bar {\mathbb {Q}}_p(-1)$, and infinite monodromy at $\infty$. Suppose further that for each closed point $x$ of $X$, the characteristic polynomial of $\mathcal {E}$ at $x$ is in $\mathbb {Q}[t]\subset \mathbb {Q}_p[t]$. Then there exists a dense open subset $U\subset X$ such that $\mathcal {E}|_U$ comes from a family of abelian varieties on $U$. As an application, let $L_1$ be an irreducible lisse $\bar {\mathbb {Q}}_l$ sheaf on $X$ that has rank 2, determinant $\bar {\mathbb {Q}}_l(-1)$, and infinite monodromy at $\infty$. Then all crystalline companions to $L_1$ exist (as predicted by Deligne's crystalline companions conjecture) if and only if there exist a dense open subset $U\subset X$ and an abelian scheme $\pi _U\colon A_U\rightarrow U$ such that $L_1|_U$ is a summand of $R^{1}(\pi _U)_*\bar {\mathbb {Q}}_l$.
Let $\mathbb {V}$ be a motivic variation of Hodge structure on a $K$-variety $S$, let $\mathcal {H}$ be the associated $K$-algebraic Hodge bundle, and let $\sigma \in \mathrm {Aut}(\mathbb {C}/K)$ be an automorphism. The absolute Hodge conjecture predicts that given a Hodge vector $v \in \mathcal {H}_{\mathbb {C}, s}$ above $s \in S(\mathbb {C})$ which lies inside $\mathbb {V}_{s}$, the conjugate vector $v_{\sigma } \in \mathcal {H}_{\mathbb {C}, s_{\sigma }}$ is Hodge and lies inside $\mathbb {V}_{s_{\sigma }}$. We study this problem in the situation where we have an algebraic subvariety $Z \subset S_{\mathbb {C}}$ containing $s$ whose algebraic monodromy group $\textbf {H}_{Z}$ fixes $v$. Using relationships between $\textbf {H}_{Z}$ and $\textbf {H}_{Z_{\sigma }}$ coming from the theories of complex and $\ell$-adic local systems, we establish a criterion that implies the absolute Hodge conjecture for $v$ subject to a group-theoretic condition on $\textbf {H}_{Z}$. We then use our criterion to establish new cases of the absolute Hodge conjecture.
We propose a conjectural framework for computing Gorenstein measures and stringy Hodge numbers in terms of motivic integration over arcs of smooth Artin stacks, and we verify this framework in the case of fantastacks, which are certain toric Artin stacks that provide (nonseparated) resolutions of singularities for toric varieties. Specifically, let
$\mathcal {X}$
be a smooth Artin stack admitting a good moduli space
$\pi : \mathcal {X} \to X$
, and assume that X is a variety with log-terminal singularities,
$\pi $
induces an isomorphism over a nonempty open subset of X and the exceptional locus of
$\pi $
has codimension at least
$2$
. We conjecture a change-of-variables formula relating the motivic measure for
$\mathcal {X}$
to the Gorenstein measure for X and functions measuring the degree to which
$\pi $
is nonseparated. We also conjecture that if the stabilisers of
$\mathcal {X}$
are special groups in the sense of Serre, then almost all arcs of X lift to arcs of
$\mathcal {X}$
, and we explain how in this case (assuming a finiteness hypothesis satisfied by fantastacks) our conjectures imply a formula for the stringy Hodge numbers of X in terms of a certain motivic integral over the arcs of
$\mathcal {X}$
. We prove these conjectures in the case where
$\mathcal {X}$
is a fantastack.
We prove the generic Torelli theorem for hypersurfaces in $\mathbb {P}^{n}$ of degree $d$ dividing $n+1$, for $d$ sufficiently large. Our proof involves the higher-order study of the variation of Hodge structure along particular one-parameter families of hypersurfaces that we call ‘Schiffer variations.’ We also analyze the case of degree $4$. Combined with Donagi's generic Torelli theorem and results of Cox and Green, this shows that the generic Torelli theorem for hypersurfaces holds with finitely many exceptions.
We prove that if G is a finite flat group scheme of p-power rank over a perfect field of characteristic p, then the second crystalline cohomology of its classifying stack $H^2_{\text {crys}}(BG)$ recovers the Dieudonné module of G. We also provide a calculation of the crystalline cohomology of the classifying stack of an abelian variety. We use this to prove that the crystalline cohomology of the classifying stack of a p-divisible group is a symmetric algebra (in degree $2$) on its Dieudonné module. We also prove mixed-characteristic analogues of some of these results using prismatic cohomology.
In quantum geometric Langlands, the Satake equivalence plays a less prominent role than in the classical theory. Gaitsgory and Lurie proposed a conjectural substitute, later termed the fundamental local equivalence. With a few exceptions, we prove this conjecture and its extension to the affine flag variety by using what amount to Soergel module techniques.
Let
$f\colon X\to B$
be a semistable fibration where X is a smooth variety of dimension
$n\geq 2$
and B is a smooth curve. We give the structure theorem for the local system of the relative
$1$
-forms and of the relative top forms. This gives a neat interpretation of the second Fujita decomposition of
$f_*\omega _{X/B}$
. We apply our interpretation to show the existence, up to base change, of higher irrational pencils and on the finiteness of the associated monodromy representations under natural Castelnuovo-type hypothesis on local subsystems. Finally, we give a criterion to have that X is not of Albanese general type if
$B=\mathbb {P}^1$
.
In this paper, we prove a decomposition result for the Chow groups of projectivizations of coherent sheaves of homological dimension
$\le 1$
. In this process, we establish the decomposition of Chow groups for the cases of the Cayley trick and standard flips. Moreover, we apply these results to study the Chow groups of symmetric powers of curves, nested Hilbert schemes of surfaces, and the varieties resolving Voisin maps for cubic fourfolds.
A protagonist here is a new-type invariant for type II degenerations of K3 surfaces, which is explicit piecewise linear convex function from the interval with at most
$18$
nonlinear points. Forgetting its actual function behavior, it also classifies the type II degenerations into several combinatorial types, depending on the type of root lattices as appeared in classical examples.
From differential geometric viewpoint, the function is obtained as the density function of the limit measure on the collapsing hyper-Kähler metrics to conjectural segments, as in [HSZ19]. On the way, we also reconstruct a moduli compactification of elliptic K3 surfaces by [AB19], [ABE20], [Brun15] in a more elementary manner, and analyze the cusps more explicitly.
We also interpret the glued hyper-Kähler fibration of [HSVZ18] as a special case from our viewpoint, and discuss other cases, and possible relations with Landau–Ginzburg models in the mirror symmetry context.
For
$G = \mathrm {GL}_2, \mathrm {SL}_2, \mathrm {PGL}_2$
we compute the intersection E-polynomials and the intersection Poincaré polynomials of the G-character variety of a compact Riemann surface C and of the moduli space of G-Higgs bundles on C of degree zero. We derive several results concerning the P=W conjectures for these singular moduli spaces.
We show that the K-moduli spaces of log Fano pairs
$\left(\mathbb {P}^1\times \mathbb {P}^1, cC\right)$
, where C is a
$(4,4)$
curve and their wall crossings coincide with the VGIT quotients of
$(2,4)$
, complete intersection curves in
$\mathbb {P}^3$
. This, together with recent results by Laza and O’Grady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of
$(4,4)$
curves on
$\mathbb {P}^1\times \mathbb {P}^1$
and the Baily–Borel compactification of moduli of quartic hyperelliptic K3 surfaces.
We construct natural operators connecting the cohomology of the moduli spaces of stable Higgs bundles with different ranks and genera which, after numerical specialisation, recover the topological mirror symmetry conjecture of Hausel and Thaddeus concerning $\mathrm {SL}_n$- and $\mathrm {PGL}_n$-Higgs bundles. This provides a complete description of the cohomology of the moduli space of stable $\mathrm {SL}_n$-Higgs bundles in terms of the tautological classes, and gives a new proof of the Hausel–Thaddeus conjecture, which was also proven recently by Gröchenig, Wyss and Ziegler via p-adic integration.
Our method is to relate the decomposition theorem for the Hitchin fibration, using vanishing cycle functors, to the decomposition theorem for the twisted Hitchin fibration, whose supports are simpler.
We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The main approach is to study log structures that are incoherent on a subspace of codimension 2 and prove a Hodge–de Rham degeneration theorem for such log spaces that also settles a conjecture by Danilov. We show that the homotopy equivalence between Maurer–Cartan solutions and deformations combined with Batalin–Vilkovisky theory can be used to obtain smoothings. The construction of new Calabi–Yau and Fano manifolds as well as Frobenius manifold structures on moduli spaces provides potential applications.
Let C be a smooth projective curve of genus
$2$
. Following a method by O’Grady, we construct a semismall desingularisation
$\tilde {\mathcal {M}}_{Dol}^G$
of the moduli space
$\mathcal {M}_{Dol}^G$
of semistable G-Higgs bundles of degree 0 for
$G=\mathrm {GL}(2,\mathbb {C}), \mathrm {SL}(2,\mathbb {C})$
. By the decomposition theorem of Beilinson, Bernstein and Deligne, one can write the cohomology of
$\tilde {\mathcal {M}}_{Dol}^G$
as a direct sum of the intersection cohomology of
$\mathcal {M}_{Dol}^G$
plus other summands supported on the singular locus. We use this splitting to compute the intersection cohomology of
$\mathcal {M}_{Dol}^G$
and prove that the mixed Hodge structure on it is pure, in analogy with what happens to ordinary cohomology in the smooth case of coprime rank and degree.
We construct a mirabolic analogue of the geometric Satake equivalence. We also prove an equivalence that relates representations of a supergroup to the category of $\operatorname{GL}(N-1,{\mathbb {C}}[\![t]\!])$-equivariant perverse sheaves on the affine Grassmannian of $\operatorname{GL}_N$. We explain how our equivalences fit into a more general framework of conjectures due to Gaiotto and to Ben-Zvi, Sakellaridis and Venkatesh.
Let π : X → C be a fibration with integral fibers over a curve C and consider a polarization H on the surface X. Let E be a stable vector bundle of rank 2 on C. We prove that the pullback π*(E) is a H-stable bundle over X. This result allows us to relate the corresponding moduli spaces of stable bundles $${{\mathcal M}_C}(2,d)$$ and $${{\mathcal M}_{X,H}}(2,df,0)$$ through an injective morphism. We study the induced morphism at the level of Brill–Noether loci to construct examples of Brill–Noether loci on fibered surfaces. Results concerning the emptiness of Brill–Noether loci follow as a consequence of a generalization of Clifford’s Theorem for rank two bundles on surfaces.
We identify the perverse filtration of a Lagrangian fibration with the monodromy weight filtration of a maximally unipotent degeneration of compact hyper-Kähler manifolds.
By use of a natural map introduced recently by the first and third authors from the space of pure-type complex differential forms on a complex manifold to the corresponding one on the small differentiable deformation of this manifold, we will give a power series proof for Kodaira–Spencer’s local stability theorem of Kähler structures. We also obtain two new local stability theorems, one of balanced structures on an n-dimensional balanced manifold with the
$(n-1,n)$
th mild
$\partial \overline {\partial }$
-lemma by power series method and the other one on p-Kähler structures with the deformation invariance of
$(p,p)$
-Bott–Chern numbers.