We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a specialization inequality relating the dimension of the complete linear series on a variety to the tropical complex of a regular semistable degeneration. Our result extends Baker's specialization inequality to arbitrary dimension.
We give the first examples of derived equivalences between varieties defined over non-closed fields where one has a rational point and the other does not. We begin with torsors over Jacobians of curves over $\mathbb {Q}$ and $\mathbb {F}_q(t)$, and conclude with a pair of hyperkähler 4-folds over $\mathbb {Q}$. The latter is independently interesting as a new example of a transcendental Brauer–Manin obstruction to the Hasse principle. The source code for the various computations is supplied as supplementary material with the online version of this article.
The aim of this paper is to study all the natural first steps of the minimal model program for the moduli space of stable pointed curves. We prove that they admit a modular interpretation, and we study their geometric properties. As a particular case, we recover the first few Hassett–Keel log canonical models. As a by-product, we produce many birational morphisms from the moduli space of stable pointed curves to alternative modular projective compactifications of the moduli space of pointed curves.
We initiate and develop a framework to handle the specialisation morphism as a filtered morphism for the perverse, and for the perverse Leray filtration, on the cohomology with constructible coefficients of varieties and morphisms parameterised by a curve. As an application, we use this framework to carry out a detailed study of filtered specialisation for the Hitchin morphisms associated with the compactification of Dolbeault moduli spaces in [de 2018].
We describe a compactification by KSBA stable pairs of the five-dimensional moduli space of K3 surfaces with a purely non-symplectic automorphism of order four and $U(2)\oplus D_4^{\oplus 2}$ lattice polarization. These K3 surfaces can be realized as the minimal resolution of the double cover of $\mathbb {P}^{1}\times \mathbb {P}^{1}$ branched along a specific $(4,\,4)$ curve. We show that, up to a finite group action, this stable pairs compactification is isomorphic to Kirwan's partial desingularization of the GIT quotient $(\mathbb {P}^{1})^{8}{/\!/}\mathrm {SL}_2$ with the symmetric linearization.
We define két abelian schemes, két 1-motives and két log 1-motives and formulate duality theory for these objects. Then we show that tamely ramified strict 1-motives over a discrete valuation field can be extended uniquely to két log 1-motives over the corresponding discrete valuation ring. As an application, we present a proof to a result of Kato stated in [12, §4.3] without proof. To a tamely ramified strict 1-motive over a discrete valuation field, we associate a monodromy pairing and compare it with Raynaud’s geometric monodromy.
We prove versions of various classical results on specialisation of fundamental groups in the context of log schemes in the sense of Fontaine and Illusie, generalising earlier results of Hoshi, Lepage and Orgogozo. The key technical result relates the category of finite Kummer étale covers of an fs log scheme over a complete Noetherian local ring to the Kummer étale coverings of its reduction.
We discuss a minimisation problem of the degree of the Chow–Mumford (CM) line bundle among all possible fillings of a polarised family with fixed general fibers, motivated by the study of the moduli space of K-stable Fano varieties. We show that such minimisation implies the slope semistability of the fiber if the central fiber is smooth.
Let $\mathcal {F}$ be a polystable sheaf on a smooth minimal projective surface of Kodaira dimension 0. Then the differential graded (DG) Lie algebra $R\operatorname {Hom}(\mathcal {F},\mathcal {F})$ of derived endomorphisms of $\mathcal {F}$ is formal. The proof is based on the study of equivariant $L_{\infty }$ minimal models of DG Lie algebras equipped with a cyclic structure of degree 2 which is non-degenerate in cohomology, and does not rely (even for K3 surfaces) on previous results on the same subject.
We conjecture a Verlinde type formula for the moduli space of Higgs sheaves on a surface with a holomorphic 2-form. The conjecture specializes to a Verlinde formula for the moduli space of sheaves. Our formula interpolates between K-theoretic Donaldson invariants studied by Göttsche and Nakajima-Yoshioka and K-theoretic Vafa-Witten invariants introduced by Thomas and also studied by Göttsche and Kool. We verify our conjectures in many examples (for example, on K3 surfaces).
We exhibit a large class of quiver moduli spaces, which are Fano varieties, by studying line bundles on quiver moduli and their global sections in general, and work out several classes of examples, comprising moduli spaces of point configurations, Kronecker moduli, and toric quiver moduli.
We prove that the $\infty $-category of $\mathrm{MGL} $-modules over any scheme is equivalent to the $\infty $-category of motivic spectra with finite syntomic transfers. Using the recognition principle for infinite $\mathbf{P} ^1$-loop spaces, we deduce that very effective $\mathrm{MGL} $-modules over a perfect field are equivalent to grouplike motivic spaces with finite syntomic transfers.
Along the way, we describe any motivic Thom spectrum built from virtual vector bundles of nonnegative rank in terms of the moduli stack of finite quasi-smooth derived schemes with the corresponding tangential structure. In particular, over a regular equicharacteristic base, we show that $\Omega ^\infty _{\mathbf{P} ^1}\mathrm{MGL} $ is the $\mathbf{A} ^1$-homotopy type of the moduli stack of virtual finite flat local complete intersections, and that for $n>0$, $\Omega ^\infty _{\mathbf{P} ^1} \Sigma ^n_{\mathbf{P} ^1} \mathrm{MGL} $ is the $\mathbf{A} ^1$-homotopy type of the moduli stack of finite quasi-smooth derived schemes of virtual dimension $-n$.
Almost perfect obstruction theories were introduced in an earlier paper by the authors as the appropriate notion in order to define virtual structure sheaves and K-theoretic invariants for many moduli stacks of interest, including K-theoretic Donaldson-Thomas invariants of sheaves and complexes on Calabi-Yau threefolds. The construction of virtual structure sheaves is based on the K-theory and Gysin maps of sheaf stacks.
In this paper, we generalize the virtual torus localization and cosection localization formulas and their combination to the setting of almost perfect obstruction theory. To this end, we further investigate the K-theory of sheaf stacks and its functoriality properties. As applications of the localization formulas, we establish a K-theoretic wall-crossing formula for simple
$\mathbb{C} ^\ast $
-wall crossings and define K-theoretic invariants refining the Jiang-Thomas virtual signed Euler characteristics.
We introduce the notion of a $Y$-pattern with coefficients and its geometric counterpart: an $\mathcal {X}$-cluster variety with coefficients. We use these constructions to build a flat degeneration of every skew-symmetrizable specially completed $\mathcal {X}$-cluster variety $\widehat {\mathcal {X} }$ to the toric variety associated to its g-fan. Moreover, we show that the fibers of this family are stratified in a natural way, with strata the specially completed $\mathcal {X}$-varieties encoded by $\operatorname {Star}(\tau )$ for each cone $\tau$ of the $\mathbf {g}$-fan. These strata degenerate to the associated toric strata of the central fiber. We further show that the family is cluster dual to $\mathcal {A}_{\mathrm {prin}}$ of Gross, Hacking, Keel and Kontsevich [Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), 497–608], and the fibers cluster dual to $\mathcal {A} _t$. Finally, we give two applications. First, we use our construction to identify the toric degeneration of Grassmannians from Rietsch and Williams [Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, Duke Math. J. 168 (2019), 3437–3527] with the Gross–Hacking–Keel–Kontsevich degeneration in the case of $\operatorname {Gr}_2(\mathbb {C} ^{5})$. Next, we use it to link cluster duality to Batyrev–Borisov duality of Gorenstein toric Fanos in the context of mirror symmetry.
We prove a decomposition formula of logarithmic Gromov–Witten invariants in a degeneration setting. A one-parameter log smooth family $X \longrightarrow B$ with singular fibre over $b_0\in B$ yields a family $\mathscr {M}(X/B,\beta ) \longrightarrow B$ of moduli stacks of stable logarithmic maps. We give a virtual decomposition of the fibre of this family over $b_0$ in terms of rigid tropical maps to the tropicalization of $X/B$. This generalizes one aspect of known results in the case that the fibre $X_{b_0}$ is a normal crossings union of two divisors. We exhibit our formulas in explicit examples.
In this note, we study homology classes in the mirror quintic Calabi–Yau threefold that can be realized by special Lagrangian submanifolds. We have used Picard–Lefschetz theory to establish the monodromy action and to study the orbit of Lagrangian vanishing cycles. For many prime numbers
$p,$
we can compute the orbit modulo p. We conjecture that the orbit in homology with coefficients in
$\mathbb {Z}$
can be determined by these orbits with coefficients in
$\mathbb {Z}_p$
.
We study the moduli space of rank 2 instanton sheaves on ℙ3 in terms of representations of a quiver consisting of three vertices and four arrows between two pairs of vertices. Aiming at an alternative compactification for the moduli space of instanton sheaves, we show that for each rank 2 instanton sheaf, there is a stability parameter θ for which the corresponding quiver representation is θ-stable (in the sense of King), and that the space of stability parameters has a non-trivial wall-and-chamber decomposition. Looking more closely at instantons of low charge, we prove that there are stability parameters with respect to which every representation corresponding to a rank 2 instanton sheaf of charge 2 is stable and provide a complete description of the wall-and-chamber decomposition for representation corresponding to a rank 2 instanton sheaf of charge 1.
We express nested Hilbert schemes of points and curves on a smooth projective surface as ‘virtual resolutions’ of degeneracy loci of maps of vector bundles on smooth ambient spaces. We show how to modify the resulting obstruction theories to produce the virtual cycles of Vafa–Witten theory and other sheaf-counting problems. The result is an effective way of calculating invariants (VW, SW, local PT and local DT) via Thom–Porteous-like Chern class formulae.
We present a systematic study of threefolds fibred by K3 surfaces that are mirror to sextic double planes. There are many parallels between this theory and the theory of elliptic surfaces. We show that the geometry of such threefolds is controlled by a pair of invariants, called the generalized functional and generalized homological invariants, and we derive an explicit birational model for them, which we call the Weierstrass form. We then describe how to resolve the singularities of the Weierstrass form to obtain the “minimal form”, which has mild singularities and is unique up to birational maps in codimension 2. Finally, we describe some of the geometric properties of threefolds in minimal form, including their singular fibres, canonical divisor, and Betti numbers.
We prove some numerical inequality for the Horikawa indices for Eisenbud–Harris special nonhyperelliptic fibrations of genus 4 on algebraic surfaces under the assumption that the multiplication map of the fibration is not surjective. Furthermore, we prove that the inequality is best possible by constructing the examples satisfying the equality.