To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We describe explicitly the Voevodsky's triangulated category of motives (and give a ‘differential graded enhancement’ of it). This enables us to able to verify that DMgm ℚ is (anti)isomorphic to Hanamura's (k).
We obtain a description of all subcategories (including those of Tate motives) and of all localizations of . We construct a conservative weight complex functor ; t gives an isomorphism . A motif is mixed Tate whenever its weight complex is. Over finite fields the Beilinson–Parshin conjecture holds if and only if tℚ is an equivalence.
For a realization D of we construct a spectral sequence S (the spectral sequence of motivic descent) converging to the cohomology of an arbitrary motif X. S is ‘motivically functorial’; it gives a canonical functorial weight filtration on the cohomology of D(X). For the ‘standard’ realizations this filtration coincides with the usual one (up to a shift of indices). For the motivic cohomology this weight filtration is non-trivial and appears to be quite new.
We define the (rational) length of a motif M; modulo certain ‘standard’ conjectures this length coincides with the maximal length of the weight filtration of the singular cohomology of M.
We give a presentation of the moduli stack of toric vector bundles with fixed equivariant total Chern class as a quotient of a fine moduli scheme of framed bundles by a linear group action. This fine moduli scheme is described explicitly as a locally closed subscheme of a product of partial flag varieties cut out by combinatorially specified rank conditions. We use this description to show that the moduli of rank three toric vector bundles satisfy Murphy’s law, in the sense of Vakil. The preliminary sections of the paper give a self-contained introduction to Klyachko’s classification of toric vector bundles.
Let n=2,3,4,5 and let X be a smooth complex projective hypersurface of . In this paper we find an effective lower bound for the degree of X, such that every holomorphic entire curve in X must satisfy an algebraic differential equation of order k=n=dim X, and also similar bounds for order k>n. Moreover, for every integer n≥2, we show that there are no such algebraic differential equations of order k<n for a smooth hypersurface in .
We establish various properties of the definition of cohomology of topological groups given by Grothendieck, Artin and Verdier in SGA4, including a Hochschild–Serre spectral sequence and a continuity theorem for compact groups. We use these properties to compute the cohomology of the Weil group of a totally imaginary field, and of the Weil-étale topology of a number ring recently introduced by Lichtenbaum (both with integer coefficients).
We introduce a valuation-theoretic approach to the problem of semistable reduction (i.e. existence of logarithmic extensions on suitable covers) of overconvergent isocrystals with Frobenius structure. The key tool is the quasicompactness of the Riemann–Zariski space associated to the function field of a variety. We also make some initial reductions, which allow attention to be focused on valuations of height 1 and transcendence degree 0.
We prove that, given a smooth projective curve C of genus g≥2, the forgetful morphism (respectively ) from the moduli space of orthogonal (respectively symplectic) bundles to the moduli space of all vector bundles over C is an embedding. Our proof relies on an explicit description of a set of generators for the polynomial invariants on the representation space of a quiver under the action of a product of classical groups.
We prove a theorem on the extension of holomorphic sections of powers of adjoint bundles from submanifolds of complex codimension 1 having non-trivial normal bundle. The first such result, due to Takayama, considers the case where the canonical bundle is twisted by a line bundle that is a sum of a big and nef line bundle and a -divisor that has Kawamata log terminal singularities on the submanifold from which extension occurs. In this paper we weaken the positivity assumptions on the twisting line bundle to what we believe to be the minimal positivity hypotheses. The main new idea is an L2 extension theorem of Ohsawa–Takegoshi type, in which twisted canonical sections are extended from submanifolds with non-trivial normal bundle.
We develop and study the epsilon factor of a ‘local system’ of p-adic coefficients over the spectrum of a complete discrete valuation field K with finite residue field of characteristic p>0. In the equal characteristic case, we define the epsilon factor of an overconvergent F-isocrystal over Spec(K), using the p-adic monodromy theorem. We conjecture a global formula, the p-adic product formula, analogous to Deligne’s formula for étale ℓ-adic sheaves proved by Laumon, which explains the importance of this local invariant. Namely, for an overconvergent F-isocrystal over an open subset of a projective smooth curve X, the constant of the functional equation of the L-series is expressed as a product of the local epsilon factors at the points of X. We prove the conjecture for rank-one overconvergent F-isocrystals and for finite unit-root overconvergent F-isocrystals. In the mixed characteristic case, we study the behavior of the epsilon factor by deformation to the field of norms.
For p≥3 an odd prime and a nonnegative integer r≤p−2, we prove a conjecture of Breuil on lattices in semi-stable representations, that is, the anti-equivalence of categories between the category of strongly divisible lattices of weight r and the category of Galois stable -lattices in semi-stable p-adic Galois representations with Hodge–Tate weights in {0,…,r}.
A K3 category is by definition a Calabi–Yau category of dimension two. Geometrically K3 categories occur as bounded derived categories of (twisted) coherent sheaves on K3 or abelian surfaces. A K3 category is generic if there are no spherical objects (or just one up to shift). We study stability conditions on K3 categories as introduced by Bridgeland and prove his conjecture about the topology of the stability manifold and the autoequivalences group for generic twisted projective K3, abelian surfaces, and K3 surfaces with trivial Picard group.
Sikora has given results which confirm the analogy between number fields and 3-manifolds. However, he has given proofs of his results which are very different in the arithmetic and in the topological case. In this paper, we show how to provide a unified approach to the results in the two cases. For this we introduce an equivariant cohomology which satisfies a localization theorem. In particular, we obtain a satisfactory explanation for the coincidences between Sikora’s formulas which leads us to clarify and to extend the dictionary of arithmetic topology.
Let X be a compact connected Riemann surface and ξ a square root of the holomorphic contangent bundle of X. Sending any line bundle L over X of order two to the image of dim H0(X, ξ ⊗ L) − dim H0(X, ξ) in Z/2Z defines a quadratic form on the space of all order two line bundles. We give a topological interpretation of this quadratic form in terms of index of vector fields on X.