We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the cohomological Brauer groups of the moduli stacks of stable genus g curves over the integers and an algebraic closure of the rational numbers vanish for any $g\geq 2$. For the n marked version, we show the same vanishing result in the range $(g,n)=(1,n)$ with $1\leq n \leq 6$ and all $(g,n)$ with $g\geq 4.$ We also discuss several finiteness results on cohomological Brauer groups of proper and smooth Deligne-Mumford stacks over the integers.
We prove the coherence of multiplier submodule sheaves associated with Griffiths semi-positive singular hermitian metrics over holomorphic vector bundles on complex manifolds which have no nontrivial subvarieties, such as generic complex tori.
We prove that the minimal exponent for local complete intersections satisfies an Inversion-of-Adjunction property. As a result, we also obtain the Inversion of Adjunction for higher Du Bois and higher rational singularities for local complete intersections.
We describe the modulo $2$ de Rham-Witt complex of a field of characteristic $2$, in terms of the powers of the augmentation ideal of the $\mathbb {Z}/2$-geometric fixed points of real topological restriction homology ${\mathrm {TRR}}$. This is analogous to the conjecture of Milnor, proved in [Kat82] for fields of characteristic $2$, which describes the modulo $2$ Milnor K-theory in terms of the powers of the augmentation ideal of the Witt group of symmetric forms. Our proof provides a somewhat explicit description of these objects, as well as a calculation of the homotopy groups of the geometric fixed points of ${\mathrm {TRR}}$ and of real topological cyclic homology, for all fields.
Let R be a commutative ring. One may ask when a general R-module P that satisfies $P \oplus R \cong R^n$ has a free summand of a given rank. M. Raynaud translated this question into one about sections of certain maps between Stiefel varieties: if $V_r(\mathbb {A}^n)$ denotes the variety $\operatorname {GL}(n) / \operatorname {GL}(n-r)$ over a field k, then the projection $V_r(\mathbb {A}^n) \to V_1(\mathbb {A}^n)$ has a section if and only if the following holds: any module P over any k-algebra R with the property that $P \oplus R \cong R^n$ has a free summand of rank $r-1$. Using techniques from $\mathbb {A}^1$-homotopy theory, we characterize those n for which the map $V_r(\mathbb {A}^n) \to V_1(\mathbb {A}^n)$ has a section in the cases $r=3,4$ under some assumptions on the base field.
We conclude that if $P \oplus R \cong R^{24m}$ and R contains the field of rational numbers, then P contains a free summand of rank $2$. If R contains a quadratically closed field of characteristic $0$, or the field of real numbers, then P contains a free summand of rank $3$. The analogous results hold for schemes and vector bundles over them.
We define kappa classes on moduli spaces of Kollár-Shepherd-Barron-Alexeev (KSBA)-stable varieties and pairs, generalizing the Miller–Morita–Mumford classes on moduli of curves, and computing them in some cases where the virtual fundamental class is known to exist, including Burniat and Campedelli surfaces. For Campedelli surfaces, an intermediate step is finding the Chow (same as cohomology) ring of the GIT quotient $(\mathbb {P}^2)^7//SL(3)$.
For a smooth projective surface $X$ satisfying $H_1(X,\mathbb{Z}) = 0$ and $w \in H^2(X,\mu _r)$, we study deformation invariants of the pair $(X,w)$. Choosing a Brauer–Severi variety $Y$ (or, equivalently, Azumaya algebra $\mathcal{A}$) over $X$ with Stiefel–Whitney class $w$, the invariants are defined as virtual intersection numbers on suitable moduli spaces of stable twisted sheaves on $Y$ constructed by Yoshioka (or, equivalently, moduli spaces of $\mathcal{A}$-modules of Hoffmann–Stuhler).
We show that the invariants do not depend on the choice of $Y$. Using a result of de Jong, we observe that they are deformation invariants of the pair $(X,w)$. For surfaces with $h^{2,0}(X) \gt 0$, we show that the invariants can often be expressed as virtual intersection numbers on Gieseker–Maruyama–Simpson moduli spaces of stable sheaves on $X$. This can be seen as a ${\rm PGL}_r$–${\rm SL}_r$ correspondence.
As an application, we express ${\rm SU}(r) / \mu _r$ Vafa–Witten invariants of $X$ in terms of ${\rm SU}(r)$ Vafa–Witten invariants of $X$. We also show how formulae from Donaldson theory can be used to obtain upper bounds for the minimal second Chern class of Azumaya algebras on $X$ with given division algebra at the generic point.
For a smooth affine group scheme G over the ring of p-adic integers and a cocharacter $\mu $ of G, we develop the deformation theory for G-$\mu $-displays over the prismatic site of Bhatt–Scholze, and discuss how our deformation theory can be interpreted in terms of prismatic F-gauges introduced by Drinfeld and Bhatt–Lurie. As an application, we prove the local representability and the formal smoothness of integral local Shimura varieties with hyperspecial level structure. We also revisit and extend some classification results of p-divisible groups.
We determine the cones of effective and nef divisors on the toroidal compactification of the ball quotient model of the moduli space of complex cubic surfaces with a chosen line. From this we also compute the corresponding cones for the moduli space of unmarked cubic surfaces.
Let X be a smooth projective variety over a complete discretely valued field of mixed characteristic. We solve non-Archimedean Monge–Ampère equations on X assuming resolution and embedded resolution of singularities. We follow the variational approach of Boucksom, Favre, and Jonsson proving the continuity of the plurisubharmonic envelope of a continuous metric on an ample line bundle on X. We replace the use of multiplier ideals in equicharacteristic zero by the use of perturbation friendly test ideals introduced by Bhatt, Ma, Patakfalvi, Schwede, Tucker, Waldron, and Witaszek building upon previous constructions by Hacon, Lamarche, and Schwede.
Let J(m) be an $m\times m$ Jordan block with eigenvalue 1. For $\lambda\in\mathbb{C}\setminus\{0,1\}$, we explicitly construct all rank 2 local systems of geometric origin on $\mathbb{P}^1\setminus\{0,1,\lambda,\infty\}$, with local monodromy conjugate to J(2) at $0,1,\lambda$ and conjugate to $-J(2)$ at $\infty$. The construction relies crucially on Katz’s middle convolution operation. We use our construction to prove two conjectures of Sun, Yang and Zuo (one of which was proven earlier by Lin, Sheng and Wang; the other was proven independently of us by Yang and Zuo) coming from the theory of Higgs–de Rham flows, as well as a special case of the periodic Higgs conjecture of Krishnamoorthy and Sheng.
This work presents a range of triangulated characterizations for important classes of singularities such as derived splinters, rational singularities, and Du Bois singularities. An invariant called “level” in a triangulated category can be used to measure the failure of a variety to have a prescribed singularity type. We provide explicit computations of this invariant for reduced Nagata schemes of Krull dimension one and for affine cones over smooth projective hypersurfaces. Furthermore, these computations are utilized to produce upper bounds for Rouquier dimension on the respective bounded derived categories.
In this article, we discuss the topology of varieties over $\mathbb {C}$, viz., their homology and homotopy groups. We show that the fundamental group of a quasi-projective variety has negative deficiency under a certain hypothesis on its second homology and therefore a large class of groups cannot arise as fundamental groups of varieties. For a smooth projective surface admitting a fibration over a curve, we give a detailed analysis of the homology and homotopy groups of their universal cover via a case-by-case analysis, depending on the nature of the singular fibers. For smooth, projective surfaces whose universal cover is holomorphically convex (conjecturally always true), we show that the second and third homotopy groups are free abelian, often of infinite rank.
We explore generalizations of the p-adic Simpson correspondence on smooth proper rigid spaces to principal bundles under rigid group varieties G. For commutative G, we prove that such a correspondence exists if and only if the Lie group logarithm is surjective. Second, we treat the case of general G on ordinary abelian varieties, in which case we prove a generalization of Faltings’ “small” correspondence to general rigid groups. On abeloid varieties, we also prove an analog of the classical Corlette–Simpson correspondence for principal bundles under linear algebraic groups.
In this paper, we present an extension theorem which is equivalent to an injectivity theorem on the cohomology groups of vector bundles equipped with singular Hermitian metrics over holomorphically convex Kähler manifolds.
Let X be a compact Kähler manifold, and let $L \rightarrow X$ be a holomorphic line bundle equipped with a singular metric h such that the curvature $\mathrm {i}\Theta _{L,h}\geqslant 0$ in the sense of currents. The main result of this paper is the vanishing of $H^n(X,\mathcal {O}(\Omega ^p_X\otimes L)\otimes \mathcal {I}(h))$ for $p\geqslant n-\operatorname {nd}(L,h)+1$, which generalizes Bogomolov’s vanishing theorem and Watanabe’s result.
In this paper we prove a new generic vanishing theorem for $X$ a complete homogeneous variety with respect to an action of a connected algebraic group. Let $A, B_0\subset X$ be locally closed affine subvarieties, and assume that $B_0$ is smooth and pure dimensional. Let ${\mathcal {P}}$ be a perverse sheaf on $A$ and let $B=g B_0$ be a generic translate of $B_0$. Then our theorem implies $(-1)^{\operatorname {codim} B}\chi (A\cap B, {\mathcal {P}}|_{A\cap B})\geq 0$. As an application, we prove in full generality a positivity conjecture about the signed Euler characteristic of generic triple intersections of Schubert cells. Such Euler characteristics are known to be the structure constants for the multiplication of the Segre–Schwartz–MacPherson classes of these Schubert cells.
We prove the existence of a power structure over the Grothendieck ring of geometric dg categories. We show that a conjecture by Galkin and Shinder (proved recently by Bergh, Gorchinskiy, Larsen and Lunts) relating the motivic and categorical zeta functions of varieties can be reformulated as a compatibility between the motivic and categorical power structures. Using our power structure, we show that the categorical zeta function of a geometric dg category can be expressed as a power with exponent the category itself. We give applications of our results for the generating series associated with Hilbert schemes of points, categorical Adams operations and series with exponent a linear algebraic group.