We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we prove a categorification of the Grothendieck–Riemann–Roch theorem. Our result implies in particular a Grothendieck–Riemann–Roch theorem for Toën and Vezzosi's secondary Chern character. As a main application, we establish a comparison between the Toën–Vezzosi Chern character and the classical Chern character, and show that the categorified Chern character recovers the classical de Rham realization.
We prove the analog of the Morel–Voevodsky localization theorem for framed motivic spaces. We deduce that framed motivic spectra are equivalent to motivic spectra over arbitrary schemes, and we give a new construction of the motivic cohomology of arbitrary schemes.
In this article we introduce the local versions of the Voevodsky category of motives with
$\mathbb{F} _p$
-coefficients over a field k, parametrized by finitely generated extensions of k. We introduce the so-called flexible fields, passage to which is conservative on motives. We demonstrate that, over flexible fields, the constructed local motivic categories are much simpler than the global one and more reminiscent of a topological counterpart. This provides handy ‘local’ invariants from which one can read motivic information. We compute the local motivic cohomology of a point for
$p=2$
and study the local Chow motivic category. We introduce local Chow groups and conjecture that over flexible fields these should coincide with Chow groups modulo numerical equivalence with
$\mathbb{F} _p$
-coefficients, which implies that local Chow motives coincide with numerical Chow motives. We prove this conjecture in various cases.
We prove that the $\infty $-category of $\mathrm{MGL} $-modules over any scheme is equivalent to the $\infty $-category of motivic spectra with finite syntomic transfers. Using the recognition principle for infinite $\mathbf{P} ^1$-loop spaces, we deduce that very effective $\mathrm{MGL} $-modules over a perfect field are equivalent to grouplike motivic spaces with finite syntomic transfers.
Along the way, we describe any motivic Thom spectrum built from virtual vector bundles of nonnegative rank in terms of the moduli stack of finite quasi-smooth derived schemes with the corresponding tangential structure. In particular, over a regular equicharacteristic base, we show that $\Omega ^\infty _{\mathbf{P} ^1}\mathrm{MGL} $ is the $\mathbf{A} ^1$-homotopy type of the moduli stack of virtual finite flat local complete intersections, and that for $n>0$, $\Omega ^\infty _{\mathbf{P} ^1} \Sigma ^n_{\mathbf{P} ^1} \mathrm{MGL} $ is the $\mathbf{A} ^1$-homotopy type of the moduli stack of finite quasi-smooth derived schemes of virtual dimension $-n$.
In this paper, we prove that if a compact Kähler manifold X has a smooth Hermitian metric
$\omega $
such that
$(T_X,\omega )$
is uniformly RC-positive, then X is projective and rationally connected. Conversely, we show that, if a projective manifold X is rationally connected, then there exists a uniformly RC-positive complex Finsler metric on
$T_X$
.
For a prime p and a field k of characteristic
$p,$
we define Steenrod operations
$P^{n}_{k}$
on motivic cohomology with
$\mathbb {F}_{p}$
-coefficients of smooth varieties defined over the base field
$k.$
We show that
$P^{n}_{k}$
is the pth power on
$H^{2n,n}(-,\mathbb {F}_{p}) \cong CH^{n}(-)/p$
and prove an instability result for the operations. Restricted to mod p Chow groups, we show that the operations satisfy the expected Adem relations and Cartan formula. Using these new operations, we remove previous restrictions on the characteristic of the base field for Rost’s degree formula. Over a base field of characteristic
$2,$
we obtain new results on quadratic forms.
Let k be an algebraically closed field of positive characteristic. For any integer
$m\ge 2$
, we show that the Hodge numbers of a smooth projective k-variety can take on any combination of values modulo m, subject only to Serre duality. In particular, there are no non-trivial polynomial relations between the Hodge numbers.
We study relationships between the Nisnevich topology on smooth schemes and certain Grothendieck topologies on proper and not necessarily proper modulus pairs, which were introduced in previous papers. Our results play an important role in the theory of sheaves with transfers on proper modulus pairs.
We show that the only summands of the theta divisor on Jacobians of curves and on intermediate Jacobians of cubic threefolds are the powers of the curve and the Fano surface of lines on the threefold. The proof only uses the decomposition theorem for perverse sheaves, some representation theory and the notion of characteristic cycles.
Using Auroux’s description of Fukaya categories of symmetric products of punctured surfaces, we compute the partially wrapped Fukaya category of the complement of $k+1$ generic hyperplanes in $\mathbb{CP}^{n}$, for $k\geqslant n$, with respect to certain stops in terms of the endomorphism algebra of a generating set of objects. The stops are chosen so that the resulting algebra is formal. In the case of the complement of $n+2$ generic hyperplanes in $\mathbb{C}P^{n}$ ($n$-dimensional pair of pants), we show that our partial wrapped Fukaya category is equivalent to a certain categorical resolution of the derived category of the singular affine variety $x_{1}x_{2}\ldots x_{n+1}=0$. By localizing, we deduce that the (fully) wrapped Fukaya category of the $n$-dimensional pair of pants is equivalent to the derived category of $x_{1}x_{2}\ldots x_{n+1}=0$. We also prove similar equivalences for finite abelian covers of the $n$-dimensional pair of pants.
Let K be a complete discrete valuation field of characteristic
$0$
, with not necessarily perfect residue field of characteristic
$p>0$
. We define a Faltings extension of
$\mathcal {O}_K$
over
$\mathbb {Z}_p$
, and we construct a Hodge-Tate filtration for abelian varieties over K by generalizing Fontaine’s construction [Fon82] where he treated the perfect residue field case.
We correct the proof of the main $\ell$-independence result of the above-mentioned paper by showing that for any smooth and proper variety over an equicharacteristic local field, there exists a globally defined such variety with the same ($p$-adic and $\ell$-adic) cohomology.
For a reductive group $G$ over a finite field, we show that the neutral block of its mixed Hecke category with a fixed monodromy under the torus action is monoidally equivalent to the mixed Hecke category of the corresponding endoscopic group $H$ with trivial monodromy. We also extend this equivalence to all blocks. We give two applications. One is a relationship between character sheaves on $G$ with a fixed semisimple parameter and unipotent character sheaves on the endoscopic group $H$, after passing to asymptotic versions. The other is a similar relationship between representations of $G(\mathbb{F}_{q})$ with a fixed semisimple parameter and unipotent representations of $H(\mathbb{F}_{q})$.
We give a list of statements on the geometry of elliptic threefolds phrased only in the language of topology and homological algebra. Using only notions from topology and homological algebra, we recover existing results and prove new results on torsion pairs in the category of coherent sheaves on an elliptic threefold.
Given a perfect valuation ring $R$ of characteristic $p$ that is complete with respect to a rank-1 nondiscrete valuation, we show that the ring $\mathbb{A}_{\inf }$ of Witt vectors of $R$ has infinite Krull dimension.
We compute the Hodge ideals of $\mathbb{Q}$-divisors in terms of the $V$-filtration induced by a local defining equation, inspired by a result of Saito in the reduced case. We deduce basic properties of Hodge ideals in this generality, and relate them to Bernstein–Sato polynomials. As a consequence of our study we establish general properties of the minimal exponent, a refined version of the log canonical threshold, and bound it in terms of discrepancies on log resolutions, addressing a question of Lichtin and Kollár.
We give a geometric interpretation of sheaf cohomology for higher degrees $n\geq 1$ in terms of torsors on the member of degree $d=n-1$ in hypercoverings of type $r=n-2$, endowed with an additional datum, the so-called rigidification. This generalizes the fact that cohomology in degree one is the group of isomorphism classes of torsors, where the rigidification becomes vacuous, and that cohomology in degree two can be expressed in terms of bundle gerbes, where the rigidification becomes an associativity constraint.
We construct a scheme
$B(r; {\mathbb {A}}^n)$
such that a map
$X \to B(r; {\mathbb {A}}^n)$
corresponds to a degree-n étale algebra on X equipped with r generating global sections. We then show that when
$n=2$
, i.e., in the quadratic étale case, the singular cohomology of
$B(r; {\mathbb {A}}^n)({\mathbb {R}})$
can be used to reconstruct a famous example of S. Chase and to extend its application to showing that there is a smooth affine
$r-1$
-dimensional
${\mathbb {R}}$
-variety on which there are étale algebras
${\mathcal {A}}_n$
of arbitrary degrees n that cannot be generated by fewer than r elements. This shows that in the étale algebra case, a bound established by U. First and Z. Reichstein in [6] is sharp.
Following the work of Mustaţă and Bitoun, we recently developed a notion of Bernstein–Sato roots for arbitrary ideals, which is a prime characteristic analogue for the roots of the Bernstein–Sato polynomial. Here, we prove that for monomial ideals the roots of the Bernstein–Sato polynomial (over $\mathbb{C}$) agree with the Bernstein–Sato roots of the mod $p$ reductions of the ideal for $p$ large enough. We regard this as evidence that the characteristic-$p$ notion of Bernstein–Sato root is reasonable.
We investigate the assumptions under which a subclass of flat quasicoherent sheaves on a quasicompact and semiseparated scheme allows us to ‘mock’ the homotopy category of projective modules. Our methods are based on module-theoretic properties of the subclass of flat modules involved as well as their behaviour with respect to Zariski localizations. As a consequence we get that, for such schemes, the derived category of flat quasicoherent sheaves is equivalent to the derived category of very flat quasicoherent sheaves. If, in addition, the scheme satisfies the resolution property then both derived categories are equivalent to the derived category of infinite-dimensional vector bundles. The equivalences are inferred from a Quillen equivalence between the corresponding models.