To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper examines Euler characteristics and characteristic classes in the motivic setting. We establish a motivic version of the Becker–Gottlieb transfer, generalizing a construction of Hoyois. Making calculations of the Euler characteristic of the scheme of maximal tori in a reductive group, we prove a generalized splitting principle for the reduction from $\operatorname{GL}_{n}$ or $\operatorname{SL}_{n}$ to the normalizer of a maximal torus (in characteristic zero). Ananyevskiy’s splitting principle reduces questions about characteristic classes of vector bundles in $\operatorname{SL}$-oriented, $\unicode[STIX]{x1D702}$-invertible theories to the case of rank two bundles. We refine the torus-normalizer splitting principle for $\operatorname{SL}_{2}$ to help compute the characteristic classes in Witt cohomology of symmetric powers of a rank two bundle, and then generalize this to develop a general calculus of characteristic classes with values in Witt cohomology.
Suppose $X$ is a smooth complex algebraic variety. A necessary condition for a complex topological vector bundle on $X$ (viewed as a complex manifold) to be algebraic is that all Chern classes must be algebraic cohomology classes, that is, lie in the image of the cycle class map. We analyze the question of whether algebraicity of Chern classes is sufficient to guarantee algebraizability of complex topological vector bundles. For affine varieties of dimension ${\leqslant}3$, it is known that algebraicity of Chern classes of a vector bundle guarantees algebraizability of the vector bundle. In contrast, we show in dimension ${\geqslant}4$ that algebraicity of Chern classes is insufficient to guarantee algebraizability of vector bundles. To do this, we construct a new obstruction to algebraizability using Steenrod operations on Chow groups. By means of an explicit example, we observe that our obstruction is nontrivial in general.
Soient $S$ un schéma nœthérien et $f:X\rightarrow S$ un morphisme propre. D’après SGA 4 XIV, pour tout faisceau constructible $\mathscr{F}$ de $\mathbb{Z}/n\mathbb{Z}$-modules sur $X$, les faisceaux de $\mathbb{Z}/n\mathbb{Z}$-modules $\mathtt{R}^{i}f_{\star }\mathscr{F}$, obtenus par image directe (pour la topologie étale), sont également constructibles : il existe une stratification $\mathfrak{S}$ de $S$ telle que ces faisceaux soient localement constants constructibles sur les strates. À la suite de travaux de N. Katz et G. Laumon, ou L. Illusie, dans le cas particulier où $S$ est génériquement de caractéristique nulle ou bien les faisceaux $\mathscr{F}$ sont constants (de torsion inversible sur $S$), on étudie ici la dépendance de $\mathfrak{S}$ en $\mathscr{F}$. On montre qu’une condition naturelle de constructibilité et modération « uniforme » satisfaite par les faisceaux constants, introduite par O. Gabber, est stable par les foncteurs $\mathtt{R}^{i}f_{\star }$. Si $f$ n’est pas supposé propre, ce résultat subsiste sous réserve de modération à l’infini, relativement à $S$. On démontre aussi l’existence de bornes uniformes sur les nombres de Betti, qui s’appliquent notamment pour les fibres des faisceaux $\mathtt{R}^{i}f_{\star }\mathbb{F}_{\ell }$, où $\ell$ parcourt les nombres premiers inversibles sur $S$.
We define a Grothendieck ring of varieties with actions of finite groups and show that the orbifold Euler characteristic and the Euler characteristics of higher orders can be defined as homomorphisms from this ring to the ring of integers. We describe two natural λ-structures on the ring and the corresponding power structures over it and show that one of these power structures is effective. We define a Grothendieck ring of varieties with equivariant vector bundles and show that the generalized (‘motivic’) Euler characteristics of higher orders can be defined as homomorphisms from this ring to the Grothendieck ring of varieties extended by powers of the class of the complex affine line. We give an analogue of the Macdonald type formula for the generating series of the generalized higher-order Euler characteristics of wreath products.
We study the equivariant oriented cohomology ring $\mathtt{h}_{T}(G/P)$ of partial flag varieties using the moment map approach. We define the right Hecke action on this cohomology ring, and then prove that the respective Bott–Samelson classes in $\mathtt{h}_{T}(G/P)$ can be obtained by applying this action to the fundamental class of the identity point, hence generalizing previously known results of Chow groups by Brion, Knutson, Peterson, Tymoczko and others. Our main result concerns the equivariant oriented cohomology theory $\mathfrak{h}$ corresponding to the 2-parameter Todd genus. We give a new interpretation of Deodhar’s parabolic Kazhdan–Lusztig basis, i.e., we realize it as some cohomology classes (the parabolic Kazhdan–Lusztig (KL) Schubert classes) in $\mathfrak{h}_{T}(G/P)$. We make a positivity conjecture, and a conjecture about the relationship of such classes with smoothness of Schubert varieties. We also prove the latter in several special cases.
We compare two cohomological Hall algebras (CoHA). The first one is the preprojective CoHA introduced in [19] associated with each quiver Q, and each algebraic oriented cohomology theory A. It is defined as the A-homology of the moduli of representations of the preprojective algebra of Q, generalizing the K-theoretic Hall algebra of commuting varieties of Schiffmann-Vasserot [15]. The other one is the critical CoHA defined by Kontsevich-Soibelman associated with each quiver with potentials. It is defined using the equivariant cohomology with compact support with coefficients in the sheaf of vanishing cycles. In the present paper, we show that the critical CoHA, for the quiver with potential of Ginzburg, is isomorphic to the preprojective CoHA as algebras. As applications, we obtain an algebra homomorphism from the positive part of the Yangian to the critical CoHA.
In this paper we construct an abelian category of mixed perverse sheaves attached to any realization of a Coxeter group, in terms of the associated Elias–Williamson diagrammatic category. This construction extends previous work of the first two authors, where we worked with parity complexes instead of diagrams, and we extend most of the properties known in this case to the general setting. As an application we prove that the split Grothendieck group of the Elias–Williamson diagrammatic category is isomorphic to the corresponding Hecke algebra, for any choice of realization.
We discuss the kernel of the localization map from étale motivic cohomology of a variety over a number field to étale motivic cohomology of the base change to its completions. This generalizes the Hasse principle for the Brauer group, and is related to Tate–Shafarevich groups of abelian varieties.
In this paper, we formulate and prove a duality for cohomology of curves over perfect fields of positive characteristic with coefficients in Néron models of abelian varieties. This is a global function field version of the author’s previous work on local duality and Grothendieck’s duality conjecture. It generalizes the perfectness of the Cassels–Tate pairing in the finite base field case. The proof uses the local duality mentioned above, Artin–Milne’s global finite flat duality, the nondegeneracy of the height pairing and finiteness of crystalline cohomology. All these ingredients are organized under the formalism of the rational étale site developed earlier.
We consider the problem of counting the number of rational points of bounded height in the zero-loci of Brauer group elements on semi-simple algebraic groups over number fields. We obtain asymptotic formulae for the counting problem for wonderful compactifications using the spectral theory of automorphic forms. Applications include asymptotic formulae for the number of matrices over $\mathbb{Q}$ whose determinant is a sum of two squares. These results provide a positive answer to some cases of a question of Serre concerning such counting problems.
We establish a tilting equivalence for rational, homotopy-invariant cohomology theories defined over non-archimedean analytic varieties. More precisely, we prove an equivalence between the categories of motives of rigid analytic varieties over a perfectoid field $K$ of mixed characteristic and over the associated (tilted) perfectoid field $K^{\flat }$ of equal characteristic. This can be considered as a motivic generalization of a theorem of Fontaine and Wintenberger, claiming that the Galois groups of $K$ and $K^{\flat }$ are isomorphic.
Let $X$ be a smooth projective manifold with $\dim _{\mathbb{C}}X=n$. We show that if a line bundle $L$ is $(n-1)$-ample, then it is $(n-1)$-positive. This is a partial converse to the Andreotti–Grauert theorem. As an application, we show that a projective manifold $X$ is uniruled if and only if there exists a Hermitian metric $\unicode[STIX]{x1D714}$ on $X$ such that its Ricci curvature $\text{Ric}(\unicode[STIX]{x1D714})$ has at least one positive eigenvalue everywhere.
We globalize the derived version of the McKay correspondence of Bridgeland, King and Reid, proven by Kawamata in the case of abelian quotient singularities, to certain logarithmic algebraic stacks with locally free log structure. The two sides of the correspondence are given respectively by the infinite root stack and by a certain version of the valuativization (the projective limit of every possible logarithmic blow-up). Our results imply, in particular, that in good cases the category of coherent parabolic sheaves with rational weights is invariant under logarithmic blow-up, up to Morita equivalence.
We explore the connection between $K3$ categories and 0-cycles on holomorphic symplectic varieties. In this paper, we focus on Kuznetsov’s noncommutative $K3$ category associated to a nonsingular cubic 4-fold.
By introducing a filtration on the $\text{CH}_{1}$-group of a cubic 4-fold $Y$, we conjecture a sheaf/cycle correspondence for the associated $K3$ category ${\mathcal{A}}_{Y}$. This is a noncommutative analog of O’Grady’s conjecture concerning derived categories of $K3$ surfaces. We study instances of our conjecture involving rational curves in cubic 4-folds, and verify the conjecture for sheaves supported on low degree rational curves.
Our method provides systematic constructions of (a) the Beauville–Voisin filtration on the $\text{CH}_{0}$-group and (b) algebraically coisotropic subvarieties of a holomorphic symplectic variety which is a moduli space of stable objects in ${\mathcal{A}}_{Y}$.
Let $f$ be a quasi-homogeneous polynomial with an isolated singularity in $\mathbf{C}^{n}$. We compute the length of the ${\mathcal{D}}$-modules ${\mathcal{D}}f^{\unicode[STIX]{x1D706}}/{\mathcal{D}}f^{\unicode[STIX]{x1D706}+1}$ generated by complex powers of $f$ in terms of the Hodge filtration on the top cohomology of the Milnor fiber. When $\unicode[STIX]{x1D706}=-1$ we obtain one more than the reduced genus of the singularity ($\dim H^{n-2}(Z,{\mathcal{O}}_{Z})$ for $Z$ the exceptional fiber of a resolution of singularities). We conjecture that this holds without the quasi-homogeneous assumption. We also deduce that the quotient ${\mathcal{D}}f^{\unicode[STIX]{x1D706}}/{\mathcal{D}}f^{\unicode[STIX]{x1D706}+1}$ is nonzero when $\unicode[STIX]{x1D706}$ is a root of the $b$-function of $f$ (which Saito recently showed fails to hold in the inhomogeneous case). We obtain these results by comparing these ${\mathcal{D}}$-modules to those defined by Etingof and the second author which represent invariants under Hamiltonian flow.
In this paper, we investigate the distribution of the maximum of partial sums of certain cubic exponential sums, commonly known as ‘Birch sums’. Our main theorem gives upper and lower bounds (of nearly the same order of magnitude) for the distribution of large values of this maximum, that hold in a wide uniform range. This improves a recent result of Kowalski and Sawin. The proofs use a blend of probabilistic methods, harmonic analysis techniques, and deep tools from algebraic geometry. The results can also be generalized to other types of $\ell$-adic trace functions. In particular, the lower bound of our result also holds for partial sums of Kloosterman sums. As an application, we show that there exist $x\in [1,p]$ and $a\in \mathbb{F}_{p}^{\times }$ such that $|\sum _{n\leqslant x}\exp (2\unicode[STIX]{x1D70B}i(n^{3}+an)/p)|\geqslant (2/\unicode[STIX]{x1D70B}+o(1))\sqrt{p}\log \log p$. The uniformity of our results suggests that this bound is optimal, up to the value of the constant.
Boij–Söderberg theory characterizes syzygies of graded modules and sheaves on projective space. This paper continues earlier work with Sam, extending the theory to the setting of $\text{GL}_{k}$-equivariant modules and sheaves on Grassmannians. Algebraically, we study modules over a polynomial ring in $kn$ variables, thought of as the entries of a $k\times n$ matrix. We give equivariant analogs of two important features of the ordinary theory: the Herzog–Kühl equations and the pairing between Betti and cohomology tables. As a necessary step, we also extend previous results, concerning the base case of square matrices, to cover complexes other than free resolutions. Our statements specialize to those of ordinary Boij–Söderberg theory when $k=1$. Our proof of the equivariant pairing gives a new proof in the graded setting: it relies on finding perfect matchings on certain graphs associated to Betti tables and to spectral sequences. As an application, we construct three families of extremal rays on the Betti cone for $2\times 3$ matrices.
We propose here a generalization of the problem addressed by the SHGH conjecture. The SHGH conjecture posits a solution to the question of how many conditions a general union $X$ of fat points imposes on the complete linear system of curves in $\mathbb{P}^{2}$ of fixed degree $d$, in terms of the occurrence of certain rational curves in the base locus of the linear subsystem defined by $X$. As a first step towards a new theory, we show that rational curves play a similar role in a special case of a generalized problem, which asks how many conditions are imposed by a general union of fat points on linear subsystems defined by imposed base points. Moreover, motivated by work of Di Gennaro, Ilardi and Vallès and of Faenzi and Vallès, we relate our results to the failure of a strong Lefschetz property, and we give a Lefschetz-like criterion for Terao’s conjecture on the freeness of line arrangements.