We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish a tilting equivalence for rational, homotopy-invariant cohomology theories defined over non-archimedean analytic varieties. More precisely, we prove an equivalence between the categories of motives of rigid analytic varieties over a perfectoid field $K$ of mixed characteristic and over the associated (tilted) perfectoid field $K^{\flat }$ of equal characteristic. This can be considered as a motivic generalization of a theorem of Fontaine and Wintenberger, claiming that the Galois groups of $K$ and $K^{\flat }$ are isomorphic.
Let $X$ be a smooth projective manifold with $\dim _{\mathbb{C}}X=n$. We show that if a line bundle $L$ is $(n-1)$-ample, then it is $(n-1)$-positive. This is a partial converse to the Andreotti–Grauert theorem. As an application, we show that a projective manifold $X$ is uniruled if and only if there exists a Hermitian metric $\unicode[STIX]{x1D714}$ on $X$ such that its Ricci curvature $\text{Ric}(\unicode[STIX]{x1D714})$ has at least one positive eigenvalue everywhere.
We globalize the derived version of the McKay correspondence of Bridgeland, King and Reid, proven by Kawamata in the case of abelian quotient singularities, to certain logarithmic algebraic stacks with locally free log structure. The two sides of the correspondence are given respectively by the infinite root stack and by a certain version of the valuativization (the projective limit of every possible logarithmic blow-up). Our results imply, in particular, that in good cases the category of coherent parabolic sheaves with rational weights is invariant under logarithmic blow-up, up to Morita equivalence.
We explore the connection between $K3$ categories and 0-cycles on holomorphic symplectic varieties. In this paper, we focus on Kuznetsov’s noncommutative $K3$ category associated to a nonsingular cubic 4-fold.
By introducing a filtration on the $\text{CH}_{1}$-group of a cubic 4-fold $Y$, we conjecture a sheaf/cycle correspondence for the associated $K3$ category ${\mathcal{A}}_{Y}$. This is a noncommutative analog of O’Grady’s conjecture concerning derived categories of $K3$ surfaces. We study instances of our conjecture involving rational curves in cubic 4-folds, and verify the conjecture for sheaves supported on low degree rational curves.
Our method provides systematic constructions of (a) the Beauville–Voisin filtration on the $\text{CH}_{0}$-group and (b) algebraically coisotropic subvarieties of a holomorphic symplectic variety which is a moduli space of stable objects in ${\mathcal{A}}_{Y}$.
Let $f$ be a quasi-homogeneous polynomial with an isolated singularity in $\mathbf{C}^{n}$. We compute the length of the ${\mathcal{D}}$-modules ${\mathcal{D}}f^{\unicode[STIX]{x1D706}}/{\mathcal{D}}f^{\unicode[STIX]{x1D706}+1}$ generated by complex powers of $f$ in terms of the Hodge filtration on the top cohomology of the Milnor fiber. When $\unicode[STIX]{x1D706}=-1$ we obtain one more than the reduced genus of the singularity ($\dim H^{n-2}(Z,{\mathcal{O}}_{Z})$ for $Z$ the exceptional fiber of a resolution of singularities). We conjecture that this holds without the quasi-homogeneous assumption. We also deduce that the quotient ${\mathcal{D}}f^{\unicode[STIX]{x1D706}}/{\mathcal{D}}f^{\unicode[STIX]{x1D706}+1}$ is nonzero when $\unicode[STIX]{x1D706}$ is a root of the $b$-function of $f$ (which Saito recently showed fails to hold in the inhomogeneous case). We obtain these results by comparing these ${\mathcal{D}}$-modules to those defined by Etingof and the second author which represent invariants under Hamiltonian flow.
In this paper, we investigate the distribution of the maximum of partial sums of certain cubic exponential sums, commonly known as ‘Birch sums’. Our main theorem gives upper and lower bounds (of nearly the same order of magnitude) for the distribution of large values of this maximum, that hold in a wide uniform range. This improves a recent result of Kowalski and Sawin. The proofs use a blend of probabilistic methods, harmonic analysis techniques, and deep tools from algebraic geometry. The results can also be generalized to other types of $\ell$-adic trace functions. In particular, the lower bound of our result also holds for partial sums of Kloosterman sums. As an application, we show that there exist $x\in [1,p]$ and $a\in \mathbb{F}_{p}^{\times }$ such that $|\sum _{n\leqslant x}\exp (2\unicode[STIX]{x1D70B}i(n^{3}+an)/p)|\geqslant (2/\unicode[STIX]{x1D70B}+o(1))\sqrt{p}\log \log p$. The uniformity of our results suggests that this bound is optimal, up to the value of the constant.
Boij–Söderberg theory characterizes syzygies of graded modules and sheaves on projective space. This paper continues earlier work with Sam, extending the theory to the setting of $\text{GL}_{k}$-equivariant modules and sheaves on Grassmannians. Algebraically, we study modules over a polynomial ring in $kn$ variables, thought of as the entries of a $k\times n$ matrix. We give equivariant analogs of two important features of the ordinary theory: the Herzog–Kühl equations and the pairing between Betti and cohomology tables. As a necessary step, we also extend previous results, concerning the base case of square matrices, to cover complexes other than free resolutions. Our statements specialize to those of ordinary Boij–Söderberg theory when $k=1$. Our proof of the equivariant pairing gives a new proof in the graded setting: it relies on finding perfect matchings on certain graphs associated to Betti tables and to spectral sequences. As an application, we construct three families of extremal rays on the Betti cone for $2\times 3$ matrices.
We propose here a generalization of the problem addressed by the SHGH conjecture. The SHGH conjecture posits a solution to the question of how many conditions a general union $X$ of fat points imposes on the complete linear system of curves in $\mathbb{P}^{2}$ of fixed degree $d$, in terms of the occurrence of certain rational curves in the base locus of the linear subsystem defined by $X$. As a first step towards a new theory, we show that rational curves play a similar role in a special case of a generalized problem, which asks how many conditions are imposed by a general union of fat points on linear subsystems defined by imposed base points. Moreover, motivated by work of Di Gennaro, Ilardi and Vallès and of Faenzi and Vallès, we relate our results to the failure of a strong Lefschetz property, and we give a Lefschetz-like criterion for Terao’s conjecture on the freeness of line arrangements.
The Dieudonné crystal of a $p$-divisible group over a semiperfect ring $R$ can be endowed with a window structure. If $R$ satisfies a boundedness condition, this construction gives an equivalence of categories. As an application we obtain a classification of $p$-divisible groups and commutative finite locally free $p$-group schemes over perfectoid rings by Breuil–Kisin–Fargues modules if $p\geqslant 3$.
We study abelian varieties and K3 surfaces with complex multiplication defined over number fields of fixed degree. We show that these varieties fall into finitely many isomorphism classes over an algebraic closure of the field of rational numbers. As an application we confirm finiteness conjectures of Shafarevich and Coleman in the CM case. In addition we prove the uniform boundedness of the Galois invariant subgroup of the geometric Brauer group for forms of a smooth projective variety satisfying the integral Mumford–Tate conjecture. When applied to K3 surfaces, this affirms a conjecture of Várilly-Alvarado in the CM case.
In this paper, we show that the cohomology of a general stable bundle on a Hirzebruch surface is determined by the Euler characteristic provided that the first Chern class satisfies necessary intersection conditions. More generally, we compute the Betti numbers of a general stable bundle. We also show that a general stable bundle on a Hirzebruch surface has a special resolution generalizing the Gaeta resolution on the projective plane. As a consequence of these results, we classify Chern characters such that the general stable bundle is globally generated.
Entropy of categorical dynamics is defined by Dimitrov–Haiden–Katzarkov–Kontsevich. Motivated by the fundamental theorem of the topological entropy due to Gromov–Yomdin, it is natural to ask an equality between the entropy and the spectral radius of induced morphisms on the numerical Grothendieck group. In this paper, we add two results on this equality: the lower bound in a general setting and the equality for orbifold projective lines.
When $p>2$, we construct a Hodge-type analogue of Rapoport–Zink spaces under the unramifiedness assumption, as formal schemes parametrizing ‘deformations’ (up to quasi-isogeny) of $p$-divisible groups with certain crystalline Tate tensors. We also define natural rigid analytic towers with expected extra structure, providing more examples of ‘local Shimura varieties’ conjectured by Rapoport and Viehmann.
Let $X$ be a smooth complex projective variety with basepoint $x$. We prove that every rigid integral irreducible representation $\unicode[STIX]{x1D70B}_{1}(X\!,x)\rightarrow \operatorname{SL}(3,\mathbb{C})$ is of geometric origin, i.e., it comes from some family of smooth projective varieties. This partially generalizes an earlier result by Corlette and the second author in the rank 2 case and answers one of their questions.
We study the derived categories of coherent sheaves on Gushel–Mukai varieties. In the derived category of such a variety, we isolate a special semiorthogonal component, which is a K3 or Enriques category according to whether the dimension of the variety is even or odd. We analyze the basic properties of this category using Hochschild homology, Hochschild cohomology, and the Grothendieck group. We study the K3 category of a Gushel–Mukai fourfold in more detail. Namely, we show this category is equivalent to the derived category of a K3 surface for a certain codimension 1 family of rational Gushel–Mukai fourfolds, and to the K3 category of a birational cubic fourfold for a certain codimension 3 family. The first of these results verifies a special case of a duality conjecture which we formulate. We discuss our results in the context of the rationality problem for Gushel–Mukai varieties, which was one of the main motivations for this work.
This paper sets up the foundations for derived algebraic geometry, Goerss–Hopkins obstruction theory, and the construction of commutative ring spectra in the abstract setting of operadic algebras in symmetric spectra in an (essentially) arbitrary model category. We show that one can do derived algebraic geometry a la Toën–Vezzosi in an abstract category of spectra. We also answer in the affirmative a question of Goerss and Hopkins by showing that the obstruction theory for operadic algebras in spectra can be done in the generality of spectra in an (essentially) arbitrary model category. We construct strictly commutative simplicial ring spectra representing a given cohomology theory and illustrate this with a strictly commutative motivic ring spectrum representing higher order products on Deligne cohomology. These results are obtained by first establishing Smith’s stable positive model structure for abstract spectra and then showing that this category of spectra possesses excellent model-theoretic properties: we show that all colored symmetric operads in symmetric spectra valued in a symmetric monoidal model category are admissible, i.e., algebras over such operads carry a model structure. This generalizes the known model structures on commutative ring spectra and $\text{E}_{\infty }$-ring spectra in simplicial sets or motivic spaces. We also show that any weak equivalence of operads in spectra gives rise to a Quillen equivalence of their categories of algebras. For example, this extends the familiar strictification of $\text{E}_{\infty }$-rings to commutative rings in a broad class of spectra, including motivic spectra. We finally show that operadic algebras in Quillen equivalent categories of spectra are again Quillen equivalent. This paper is also available at arXiv:1410.5699v2.
Given an $n$-dimensional variety $Z$ with rational singularities, we conjecture that if $f:Y\rightarrow Z$ is a resolution of singularities whose reduced exceptional divisor $E$ has simple normal crossings, then
We prove this when $Z$ has isolated singularities and when it is a toric variety. We deduce that for a divisor $D$ with isolated rational singularities on a smooth complex $n$-dimensional variety $X$, the generation level of Saito’s Hodge filtration on the localization $\mathscr{O}_{X}(\ast D)$ is at most $n-3$.
In order to study $p$-adic étale cohomology of an open subvariety $U$ of a smooth proper variety $X$ over a perfect field of characteristic $p>0$, we introduce new $p$-primary torsion sheaves. It is a modification of the logarithmic de Rham–Witt sheaves of $X$ depending on effective divisors $D$ supported in $X-U$. Then we establish a perfect duality between cohomology groups of the logarithmic de Rham–Witt cohomology of $U$ and an inverse limit of those of the mentioned modified sheaves. Over a finite field, the duality can be used to study wildly ramified class field theory for the open subvariety $U$.