We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We compute a presentation of the fundamental group of a higher-rank graph using a coloured graph description of higher-rank graphs developed by the third author. We compute the fundamental groups of several examples from the literature. Our results fit naturally into the suite of known geometrical results about higher-rank graphs when we show that the abelianization of the fundamental group is the homology group. We end with a calculation which gives a non-standard presentation of the fundamental group of the Klein bottle to the one normally found in the literature.
We provide a new formalism of de Rham–Witt complexes in the logarithmic setting. This construction generalises a result of Bhatt–Lurie–Mathew and agrees with those of Hyodo–Kato and Matsuue for log-smooth schemes of log-Cartier type. We then use our construction to study the monodromy action and slopes of Frobenius on log crystalline cohomology.
We show that the additive higher Chow groups of regular schemes over a field induce a Zariski sheaf of pro-differential graded algebras, the Milnor range of which is isomorphic to the Zariski sheaf of big de Rham–Witt complexes. This provides an explicit cycle-theoretic description of the big de Rham–Witt sheaves. Several applications are derived.
We establish a kind of ‘degree
$0$
Freudenthal
${\mathbb {G}_m}$
-suspension theorem’ in motivic homotopy theory. From this we deduce results about the conservativity of the
$\mathbb P^1$
-stabilization functor.
In order to establish these results, we show how to compute certain pullbacks in the cohomology of a strictly homotopy-invariant sheaf in terms of the Rost–Schmid complex. This establishes the main conjecture of [2], which easily implies the aforementioned results.
We compare the Kummer flat (resp., Kummer étale) cohomology with the flat (resp., étale) cohomology with coefficients in smooth commutative group schemes, finite flat group schemes, and Kato’s logarithmic multiplicative group. We are particularly interested in the case of algebraic tori in the Kummer flat topology. We also make some computations for certain special cases of the base log scheme.
We equate various Euler classes of algebraic vector bundles, including those of [12] and one suggested by M. J. Hopkins, A. Raksit, and J.-P. Serre. We establish integrality results for this Euler class and give formulas for local indices at isolated zeros, both in terms of the six-functors formalism of coherent sheaves and as an explicit recipe in the commutative algebra of Scheja and Storch. As an application, we compute the Euler classes enriched in bilinear forms associated to arithmetic counts of d-planes on complete intersections in
$\mathbb P^n$
in terms of topological Euler numbers over
$\mathbb {R}$
and
$\mathbb {C}$
.
We compute the cohomology rings of smooth real toric varieties and of real toric spaces, which are quotients of real moment-angle complexes by freely acting subgroups of the ambient 2-torus. The differential graded algebra (dga) we present is in fact an equivariant dga model, valid for arbitrary coefficients. We deduce from our description that smooth toric varieties are $\hbox{M}$-varieties.
In this paper, we investigate the distribution of the maximum of partial sums of families of $m$-periodic complex-valued functions satisfying certain conditions. We obtain precise uniform estimates for the distribution function of this maximum in a near-optimal range. Our results apply to partial sums of Kloosterman sums and other families of $\ell$-adic trace functions, and are as strong as those obtained by Bober, Goldmakher, Granville and Koukoulopoulos for character sums. In particular, we improve on the recent work of the third author for Birch sums. However, unlike character sums, we are able to construct families of $m$-periodic complex-valued functions which satisfy our conditions, but for which the Pólya–Vinogradov inequality is sharp.
We give counterexamples to the degeneration of the Hochschild-Kostant-Rosenberg spectral sequence in characteristic p, both in the untwisted and twisted settings. We also prove that the de Rham-HP and crystalline-TP spectral sequences need not degenerate.
The goal of this article is to extend the work of Voevodsky and Morel on the homotopy t-structure on the category of motivic complexes to the context of motives for logarithmic schemes. To do so, we prove an analogue of Morel’s connectivity theorem and show a purity statement for
$({\mathbf {P}}^1, \infty )$
-local complexes of sheaves with log transfers. The homotopy t-structure on
${\operatorname {\mathbf {logDM}^{eff}}}(k)$
is proved to be compatible with Voevodsky’s t-structure; that is, we show that the comparison functor
$R^{{\overline {\square }}}\omega ^*\colon {\operatorname {\mathbf {DM}^{eff}}}(k)\to {\operatorname {\mathbf {logDM}^{eff}}}(k)$
is t-exact. The heart of the homotopy t-structure on
${\operatorname {\mathbf {logDM}^{eff}}}(k)$
is the Grothendieck abelian category of strictly cube-invariant sheaves with log transfers: we use it to build a new version of the category of reciprocity sheaves in the style of Kahn-Saito-Yamazaki and Rülling.
We prove several results showing that the algebraic $K$-theory of valuation rings behaves as though such rings were regular Noetherian, in particular an analogue of the Geisser–Levine theorem. We also give some new proofs of known results concerning cdh descent of algebraic $K$-theory.
Building upon work of Epstein, May and Drury, we define and investigate the mod p Steenrod operations on the de Rham cohomology of smooth algebraic stacks over a field of characteristic
$p>0$
. We then compute the action of the operations on the de Rham cohomology of classifying stacks for finite groups, connected reductive groups for which p is not a torsion prime and (special) orthogonal groups when
$p=2$
.
Let $t:{\mathbb F_p} \to C$ be a complex valued function on ${\mathbb F_p}$. A classical problem in analytic number theory is bounding the maximum
$$M(t): = \mathop {\max }\limits_{0 \le H < p} \left| {{1 \over {\sqrt p }}\sum\limits_{0 \le n < H} {t(n)} } \right|$$
of the absolute value of the incomplete sums $(1/\sqrt p )\sum\nolimits_{0 \le n < H} {t(n)} $. In this very general context one of the most important results is the Pólya–Vinogradov bound
where $\hat t:{\mathbb F_p} \to \mathbb C$ is the normalized Fourier transform of t. In this paper we provide a lower bound for certain incomplete Kloosterman sums, namely we prove that for any $\varepsilon > 0$ there exists a large subset of $a \in \mathbb F_p^ \times $ such that for $${\rm{k}}{1_{a,1,p}}:x \mapsto e((ax + \bar x)/p)$$ we have
We give an arithmetic count of the lines on a smooth cubic surface over an arbitrary field $k$, generalizing the counts that over ${\mathbf {C}}$ there are $27$ lines, and over ${\mathbf {R}}$ the number of hyperbolic lines minus the number of elliptic lines is $3$. In general, the lines are defined over a field extension $L$ and have an associated arithmetic type $\alpha$ in $L^*/(L^*)^2$. There is an equality in the Grothendieck–Witt group $\operatorname {GW}(k)$ of $k$,
where $\operatorname {Tr}_{L/k}$ denotes the trace $\operatorname {GW}(L) \to \operatorname {GW}(k)$. Taking the rank and signature recovers the results over ${\mathbf {C}}$ and ${\mathbf {R}}$. To do this, we develop an elementary theory of the Euler number in $\mathbf {A}^1$-homotopy theory for algebraic vector bundles. We expect that further arithmetic counts generalizing enumerative results in complex and real algebraic geometry can be obtained with similar methods.
We define a motivic conductor for any presheaf with transfers F using the categorical framework developed for the theory of motives with modulus by Kahn, Miyazaki, Saito and Yamazaki. If F is a reciprocity sheaf, this conductor yields an increasing and exhaustive filtration on
$F(L)$
, where L is any henselian discrete valuation field of geometric type over the perfect ground field. We show that if F is a smooth group scheme, then the motivic conductor extends the Rosenlicht–Serre conductor; if F assigns to X the group of finite characters on the abelianised étale fundamental group of X, then the motivic conductor agrees with the Artin conductor defined by Kato and Matsuda; and if F assigns to X the group of integrable rank
$1$
connections (in characteristic
$0$
), then it agrees with the irregularity. We also show that this machinery gives rise to a conductor for torsors under finite flat group schemes over the base field, which we believe to be new. We introduce a general notion of conductors on presheaves with transfers and show that on a reciprocity sheaf, the motivic conductor is minimal and any conductor which is defined only for henselian discrete valuation fields of geometric type with perfect residue field can be uniquely extended to all such fields without any restriction on the residue field. For example, the Kato–Matsuda Artin conductor is characterised as the canonical extension of the classical Artin conductor defined in the case of a perfect residue field.
We prove that the special-value conjecture for the zeta function of a proper, regular, flat arithmetic surface formulated in [6] at
$s=1$
is equivalent to the Birch and Swinnerton-Dyer conjecture for the Jacobian of the generic fibre. There are two key results in the proof. The first is the triviality of the correction factor of [6, Conjecture 5.12], which we show for arbitrary regular proper arithmetic schemes. In the proof we need to develop some results for the eh-topology on schemes over finite fields which might be of independent interest. The second result is a different proof of a formula due to Geisser, relating the cardinalities of the Brauer and the Tate–Shafarevich group, which applies to arbitrary rather than only totally imaginary base fields.
We introduce irregular constructible sheaves, which are ${\mathbb {C}}$-constructible with coefficients in a finite version of the Novikov ring $\Lambda$ and special gradings. We show that the bounded derived category of cohomologically irregular constructible complexes is equivalent to the bounded derived category of holonomic ${\mathcal {D}}$-modules by a modification of D’Agnolo and Kashiwara's irregular Riemann–Hilbert correspondence. The bounded derived category of cohomologically irregular constructible complexes is equipped with the irregular perverse $t$-structure, which is a straightforward generalization of usual perverse $t$-structure, and we prove that its heart is equivalent to the abelian category of holonomic ${\mathcal {D}}$-modules. We also develop the algebraic version of the theory.
Let $\mathcal {F}$ be a polystable sheaf on a smooth minimal projective surface of Kodaira dimension 0. Then the differential graded (DG) Lie algebra $R\operatorname {Hom}(\mathcal {F},\mathcal {F})$ of derived endomorphisms of $\mathcal {F}$ is formal. The proof is based on the study of equivariant $L_{\infty }$ minimal models of DG Lie algebras equipped with a cyclic structure of degree 2 which is non-degenerate in cohomology, and does not rely (even for K3 surfaces) on previous results on the same subject.
We study log $\mathscr {D}$-modules on smooth log pairs and construct a comparison theorem of log de Rham complexes. The proof uses Sabbah’s generalized b-functions. As applications, we deduce a log index theorem and a Riemann-Roch type formula for perverse sheaves on smooth quasi-projective varieties. The log index theorem naturally generalizes the Dubson-Kashiwara index theorem on smooth projective varieties.
We define the Atiyah class for global matrix factorisations and use it to give a formula for the categorical Chern character and the boundary-bulk map for matrix factorisations, generalising the formula in the local case obtained in [12]. Our approach is based on developing the Lie algebra analogies observed by Kapranov [7] and Markarian [9].