We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using $L^2$-methods, we prove a vanishing theorem for tame harmonic bundles over quasi-compact Kähler manifolds in a very general setting. As a special case, we give a completely new proof of the Kodaira-type vanishing theorems for Higgs bundles due to Arapura. To prove our vanishing theorem, we construct a fine resolution of the Dolbeault complex for tame harmonic bundles via the complex of sheaves of $L^2$-forms, and we establish the Hörmander $L^2$-estimate and solve $(\bar {\partial }_E+\theta )$-equations for Higgs bundles $(E,\theta )$.
This paper explores the cohomological consequences of the existence of moduli spaces for flat bundles with bounded rank and irregularity at infinity and gives unconditional proofs. Namely, we prove the existence of a universal bound for the dimension of de Rham cohomology of flat bundles with bounded rank and irregularity on surfaces. In any dimension, we prove a Lefschetz recognition principle stating the existence of hyperplane sections distinguishing flat bundles with bounded rank and irregularity after restriction. We obtain in any dimension a universal bound for the degrees of the turning loci of flat bundles with bounded rank and irregularity. Along the way, we introduce a new operation on the group of $b$-divisors on a smooth surface (the partial discrepancy) and prove a closed formula for the characteristic cycles of flat bundles on surfaces in terms of the partial discrepancy of the irregularity $b$-divisor attached to any flat bundle by Kedlaya.
Let $f:X\to Y$ be a surjective projective map, and let L be a holomorphic line bundle on X equipped with a (singular) semi-positive Hermitian metric h. In this article, by studying the canonical metric on the direct image sheaf of the twisted relative canonical bundles $K_{X/Y}\otimes L\otimes \mathscr {I}(h)$, we obtain that this metric has dual Nakano semi-positivity when h is smooth and there is no deformation by f and that this metric has locally Nakano semi-positivity in the singular sense when h is singular.
We study the Abel-Jacobi image of the Ceresa cycle $W_{k, e}-W_{k, e}^-$, where $W_{k, e}$ is the image of the k-th symmetric product of a curve X with a base point e on its Jacobian variety. For certain Fermat quotient curves of genus g, we prove that for any choice of the base point and $k \leq g-2$, the Abel-Jacobi image of the Ceresa cycle is non-torsion. In particular, these cycles are non-torsion modulo rational equivalence.
We compute the Jantzen filtration of a $\mathcal {D}$-module on the flag variety of $\operatorname {\mathrm {SL}}_2(\mathbb {C})$. At each step in the computation, we illustrate the $\mathfrak {sl}_2(\mathbb {C})$-module structure on global sections to give an algebraic picture of this geometric computation. We conclude by showing that the Jantzen filtration on the $\mathcal {D}$-module agrees with the algebraic Jantzen filtration on its global sections, demonstrating a famous theorem of Beilinson and Bernstein.
For a reduced hyperplane arrangement, we prove the analytic Twisted Logarithmic Comparison Theorem, subject to mild combinatorial arithmetic conditions on the weights defining the twist. This gives a quasi-isomorphism between the twisted logarithmic de Rham complex and the twisted meromorphic de Rham complex. The latter computes the cohomology of the arrangement’s complement with coefficients from the corresponding rank one local system. We also prove the algebraic variant (when the arrangement is central), and the analytic and algebraic (untwisted) Logarithmic Comparison Theorems. The last item positively resolves an old conjecture of Terao. We also prove that: Every nontrivial rank one local system on the complement can be computed via these Twisted Logarithmic Comparison Theorems; these computations are explicit finite-dimensional linear algebra. Finally, we give some $\mathscr {D}_{X}$-module applications: For example, we give a sharp restriction on the codimension one components of the multivariate Bernstein–Sato ideal attached to an arbitrary factorization of an arrangement. The bound corresponds to (and, in the univariate case, gives an independent proof of) M. Saito’s result that the roots of the Bernstein–Sato polynomial of a non-smooth, central, reduced arrangement live in $(-2 + 1/d, 0).$
We prove a version of the Lefschetz hyperplane theorem for fppf cohomology with coefficients in any finite commutative group scheme over the ground field. As consequences, we establish new Lefschetz results for the Picard scheme.
The deepest arithmetic invariants attached to an algebraic variety defined over a number field $F$ are conjecturally captured by the integral part of its motivic cohomology. There are essentially two ways of defining it when $X$ is a smooth projective variety: one is via the $K$-theory of a regular integral model, the other is through its $\ell$-adic realization. Both approaches are conjectured to coincide. This paper initiates the study of motivic cohomology for global fields of positive characteristic, hereafter named $A$-motivic cohomology, where classical mixed motives are replaced by mixed Anderson $A$-motives. Our main objective is to set the definitions of the integral part and the good$\ell$-adic part of the $A$-motivic cohomology using Gardeyn's notion of maximal models as the analogue of regular integral models of varieties. Our main result states that the integral part is contained in the good$\ell$-adic part. As opposed to what is expected in the number field setting, we show that the two approaches do not match in general. We conclude this work by introducing the submodule of regulated extensions of mixed Anderson $A$-motives, for which we expect the two approaches to match, and solve some particular cases of this expectation.
We introduce the notion of completed $F$-crystals on the absolute prismatic site of a smooth $p$-adic formal scheme. We define a functor from the category of completed prismatic $F$-crystals to that of crystalline étale $\mathbf {Z}_p$-local systems on the generic fiber of the formal scheme and show that it gives an equivalence of categories. This generalizes the work of Bhatt and Scholze, which treats the case of a mixed characteristic complete discrete valuation ring with perfect residue field.
Faltings ringed topos, the keystone of Faltings’ approach to p-adic Hodge theory for a smooth variety over a local field, relies on the choice of an integral model, and its good properties depend on the (logarithmic) smoothness of this model. Inspired by Deligne’s approach to classical Hodge theory for singular varieties, we establish a cohomological descent result for the structural sheaf of Faltings topos, which makes it possible to extend Faltings’ approach to any integral model, that is, without any smoothness assumption. An essential ingredient of our proof is a variation of Bhatt–Scholze’s arc-descent of perfectoid rings.
We prove that the Hodge–Tate spectral sequence of a proper smooth rigid analytic variety can be reconstructed from its infinitesimal $\mathbb{B}_{\text{dR}}^+$-cohomology through the Bialynicki–Birula map. We also give a new proof of the torsion-freeness of the infinitesimal $\mathbb{B}_{\text{dR}}^+$-cohomology independent of Conrad–Gabber spreading theorem, and a conceptual explanation that the degeneration of Hodge–Tate spectral sequences is equivalent to that of Hodge–de Rham spectral sequences.
Let $C\; : \;y^2=f(x)$ be a hyperelliptic curve of genus $g\geq 1$, defined over a complete discretely valued field $K$, with ring of integers $O_K$. Under certain conditions on $C$, mild when residue characteristic is not $2$, we explicitly construct the minimal regular model with normal crossings $\mathcal{C}/O_K$ of $C$. In the same setting we determine a basis of integral differentials of $C$, that is an $O_K$-basis for the global sections of the relative dualising sheaf $\omega _{\mathcal{C}/O_K}$.
We give explicit presentations of the integral equivariant cohomology of the affine Grassmannians and flag varieties in type A, arising from their natural embeddings in the corresponding infinite (Sato) Grassmannian and flag variety. These presentations are compared with results obtained by Lam and Shimozono, for rational equivariant cohomology of the affine Grassmannian, and by Larson, for the integral cohomology of the moduli stack of vector bundles on .
We exhibit the Hodge degeneration from nonabelian Hodge theory as a $2$-fold delooping of the filtered loop space $E_2$-groupoid in formal moduli problems. This is an iterated groupoid object which in degree $1$ recovers the filtered circle $S^1_{fil}$ of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an $E_2$-cogroupoid object in the $\infty $-category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on $S^1$, as well as the Todd class of the Lie algebroid $\mathbb {T}_{X}$; this is an invariant of a smooth and proper scheme X that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.
To understand the p-adic étale cohomology of a proper smooth variety over a p-adic field, Faltings compared it to the cohomology of his ringed topos, by the so-called Faltings’ main p-adic comparison theorem, and then deduced various comparisons with p-adic cohomologies originating from differential forms. In this article, we generalize the former to any proper and finitely presented morphism of coherent schemes over an absolute integral closure of $\mathbb {Z}_p$ (without any smoothness assumption) for torsion abelian étale sheaves (not necessarily finite locally constant). Our proof relies on our cohomological descent for Faltings’ ringed topos, using a variant of de Jong’s alteration theorem for morphisms of schemes due to Gabber–Illusie–Temkin to reduce to the relative case of proper log-smooth morphisms of log-smooth schemes over a complete discrete valuation ring proved by Abbes–Gros. A by-product of our cohomological descent is a new construction of Faltings’ comparison morphism, which does not use Achinger’s results on $K(\pi ,1)$-schemes.
We prove that after inverting the Planck constant $h$, the Bezrukavnikov–Kaledin quantization $(X, {\mathcal {O}}_h)$ of symplectic variety $X$ in characteristic $p$ with $H^2(X, {\mathcal {O}}_X) =0$ is Morita equivalent to a certain central reduction of the algebra of differential operators on $X$.
In this article, we establish the Grothendieck–Serre conjecture over valuation rings: for a reductive group scheme $G$ over a valuation ring $V$ with fraction field $K$, a $G$-torsor over $V$ is trivial if it is trivial over $K$. This result is predicted by the original Grothendieck–Serre conjecture and the resolution of singularities. The novelty of our proof lies in overcoming subtleties brought by general nondiscrete valuation rings. By using flasque resolutions and inducting with local cohomology, we prove a non-Noetherian counterpart of Colliot-Thélène–Sansuc's case of tori. Then, taking advantage of techniques in algebraization, we obtain the passage to the Henselian rank-one case. Finally, we induct on Levi subgroups and use the integrality of rational points of anisotropic groups to reduce to the semisimple anisotropic case, in which we appeal to properties of parahoric subgroups in Bruhat–Tits theory to conclude. In the last section, by using extension properties of reflexive sheaves on formal power series over valuation rings and patching of torsors, we prove a variant of Nisnevich's purity conjecture.
We prove that the $p^\infty$-torsion of the transcendental Brauer group of an abelian variety over a finitely generated field of characteristic $p>0$ is bounded. This answers a (variant of a) question asked by Skorobogatov and Zarhin for abelian varieties. To do this, we prove a ‘flat Tate conjecture’ for divisors. We also study other geometric Galois-invariant $p^\infty$-torsion classes of the Brauer group which are not in the transcendental Brauer group. These classes, in contrast with our main theorem, can be infinitely $p$-divisible. We explain how the existence of these $p$-divisible towers is naturally related to the failure of surjectivity of specialisation morphisms of Néron–Severi groups in characteristic $p$.