To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a smooth projective surface $X$ satisfying $H_1(X,\mathbb{Z}) = 0$ and $w \in H^2(X,\mu _r)$, we study deformation invariants of the pair $(X,w)$. Choosing a Brauer–Severi variety $Y$ (or, equivalently, Azumaya algebra $\mathcal{A}$) over $X$ with Stiefel–Whitney class $w$, the invariants are defined as virtual intersection numbers on suitable moduli spaces of stable twisted sheaves on $Y$ constructed by Yoshioka (or, equivalently, moduli spaces of $\mathcal{A}$-modules of Hoffmann–Stuhler).
We show that the invariants do not depend on the choice of $Y$. Using a result of de Jong, we observe that they are deformation invariants of the pair $(X,w)$. For surfaces with $h^{2,0}(X) \gt 0$, we show that the invariants can often be expressed as virtual intersection numbers on Gieseker–Maruyama–Simpson moduli spaces of stable sheaves on $X$. This can be seen as a ${\rm PGL}_r$–${\rm SL}_r$ correspondence.
As an application, we express ${\rm SU}(r) / \mu _r$ Vafa–Witten invariants of $X$ in terms of ${\rm SU}(r)$ Vafa–Witten invariants of $X$. We also show how formulae from Donaldson theory can be used to obtain upper bounds for the minimal second Chern class of Azumaya algebras on $X$ with given division algebra at the generic point.
We consider the Bernstein–Sato polynomial of a locally quasi-homogeneous polynomial $f \in R = \mathbb{C}[x_{1}, x_{2}, x_{3}]$. We construct, in the analytic category, a complex of $\mathscr{D}_{X}[s]$-modules that can be used to compute the $\mathscr{D}_{X}[s]$-dual of $\mathscr{D}_{X}[s] f^{s-1}$ as the middle term of a short exact sequence where the outer terms are well understood. This extends a result by Narváez Macarro where a freeness assumption was required. We derive many results about the zeros of the Bernstein–Sato polynomial. First, we prove each nonvanishing degree of the zeroth local cohomology of the Milnor algebra $H_{\mathfrak{m}}^{0} (R / (\partial f))$ contributes a root to the Bernstein–Sato polynomial, generalizing a result of M. Saito (where the argument cannot weaken homogeneity to quasi-homogeneity). Second, we prove the zeros of the Bernstein–Sato polynomial admit a partial symmetry about $-1$, extending a result of Narváez Macarro that again required freeness. We give applications to very small roots, the twisted logarithmic comparison theorem, and more precise statements when f is additionally assumed to be homogeneous. Finally, when f defines a hyperplane arrangement in $\mathbb{C}^{3}$ we give a complete formula for the zeros of the Bernstein–Sato polynomial of f. We show all zeros except the candidate root $-2 + (2 / \deg(f))$ are (easily) combinatorially given; we give many equivalent characterizations of when the only noncombinatorial candidate root $-2 + (2/ \deg(f))$ is in fact a zero of the Bernstein–Sato polynomial. One equivalent condition is the nonvanishing of $H_{\mathfrak{m}}^{0}( R / (\partial f))_{\deg(f) - 1}$.
For a smooth affine group scheme G over the ring of p-adic integers and a cocharacter $\mu $ of G, we develop the deformation theory for G-$\mu $-displays over the prismatic site of Bhatt–Scholze, and discuss how our deformation theory can be interpreted in terms of prismatic F-gauges introduced by Drinfeld and Bhatt–Lurie. As an application, we prove the local representability and the formal smoothness of integral local Shimura varieties with hyperspecial level structure. We also revisit and extend some classification results of p-divisible groups.
We determine the cones of effective and nef divisors on the toroidal compactification of the ball quotient model of the moduli space of complex cubic surfaces with a chosen line. From this we also compute the corresponding cones for the moduli space of unmarked cubic surfaces.
Let X be a smooth projective variety over a complete discretely valued field of mixed characteristic. We solve non-Archimedean Monge–Ampère equations on X assuming resolution and embedded resolution of singularities. We follow the variational approach of Boucksom, Favre, and Jonsson proving the continuity of the plurisubharmonic envelope of a continuous metric on an ample line bundle on X. We replace the use of multiplier ideals in equicharacteristic zero by the use of perturbation friendly test ideals introduced by Bhatt, Ma, Patakfalvi, Schwede, Tucker, Waldron, and Witaszek building upon previous constructions by Hacon, Lamarche, and Schwede.
Let J(m) be an $m\times m$ Jordan block with eigenvalue 1. For $\lambda\in\mathbb{C}\setminus\{0,1\}$, we explicitly construct all rank 2 local systems of geometric origin on $\mathbb{P}^1\setminus\{0,1,\lambda,\infty\}$, with local monodromy conjugate to J(2) at $0,1,\lambda$ and conjugate to $-J(2)$ at $\infty$. The construction relies crucially on Katz’s middle convolution operation. We use our construction to prove two conjectures of Sun, Yang and Zuo (one of which was proven earlier by Lin, Sheng and Wang; the other was proven independently of us by Yang and Zuo) coming from the theory of Higgs–de Rham flows, as well as a special case of the periodic Higgs conjecture of Krishnamoorthy and Sheng.
This work presents a range of triangulated characterizations for important classes of singularities such as derived splinters, rational singularities, and Du Bois singularities. An invariant called “level” in a triangulated category can be used to measure the failure of a variety to have a prescribed singularity type. We provide explicit computations of this invariant for reduced Nagata schemes of Krull dimension one and for affine cones over smooth projective hypersurfaces. Furthermore, these computations are utilized to produce upper bounds for Rouquier dimension on the respective bounded derived categories.
In this article, we discuss the topology of varieties over $\mathbb {C}$, viz., their homology and homotopy groups. We show that the fundamental group of a quasi-projective variety has negative deficiency under a certain hypothesis on its second homology and therefore a large class of groups cannot arise as fundamental groups of varieties. For a smooth projective surface admitting a fibration over a curve, we give a detailed analysis of the homology and homotopy groups of their universal cover via a case-by-case analysis, depending on the nature of the singular fibers. For smooth, projective surfaces whose universal cover is holomorphically convex (conjecturally always true), we show that the second and third homotopy groups are free abelian, often of infinite rank.
We explore generalizations of the p-adic Simpson correspondence on smooth proper rigid spaces to principal bundles under rigid group varieties G. For commutative G, we prove that such a correspondence exists if and only if the Lie group logarithm is surjective. Second, we treat the case of general G on ordinary abelian varieties, in which case we prove a generalization of Faltings’ “small” correspondence to general rigid groups. On abeloid varieties, we also prove an analog of the classical Corlette–Simpson correspondence for principal bundles under linear algebraic groups.
In this paper, we present an extension theorem which is equivalent to an injectivity theorem on the cohomology groups of vector bundles equipped with singular Hermitian metrics over holomorphically convex Kähler manifolds.
Let X be a compact Kähler manifold, and let $L \rightarrow X$ be a holomorphic line bundle equipped with a singular metric h such that the curvature $\mathrm {i}\Theta _{L,h}\geqslant 0$ in the sense of currents. The main result of this paper is the vanishing of $H^n(X,\mathcal {O}(\Omega ^p_X\otimes L)\otimes \mathcal {I}(h))$ for $p\geqslant n-\operatorname {nd}(L,h)+1$, which generalizes Bogomolov’s vanishing theorem and Watanabe’s result.
In this paper we prove a new generic vanishing theorem for $X$ a complete homogeneous variety with respect to an action of a connected algebraic group. Let $A, B_0\subset X$ be locally closed affine subvarieties, and assume that $B_0$ is smooth and pure dimensional. Let ${\mathcal {P}}$ be a perverse sheaf on $A$ and let $B=g B_0$ be a generic translate of $B_0$. Then our theorem implies $(-1)^{\operatorname {codim} B}\chi (A\cap B, {\mathcal {P}}|_{A\cap B})\geq 0$. As an application, we prove in full generality a positivity conjecture about the signed Euler characteristic of generic triple intersections of Schubert cells. Such Euler characteristics are known to be the structure constants for the multiplication of the Segre–Schwartz–MacPherson classes of these Schubert cells.
We prove the existence of a power structure over the Grothendieck ring of geometric dg categories. We show that a conjecture by Galkin and Shinder (proved recently by Bergh, Gorchinskiy, Larsen and Lunts) relating the motivic and categorical zeta functions of varieties can be reformulated as a compatibility between the motivic and categorical power structures. Using our power structure, we show that the categorical zeta function of a geometric dg category can be expressed as a power with exponent the category itself. We give applications of our results for the generating series associated with Hilbert schemes of points, categorical Adams operations and series with exponent a linear algebraic group.
Using $L^2$-methods, we prove a vanishing theorem for tame harmonic bundles over quasi-compact Kähler manifolds in a very general setting. As a special case, we give a completely new proof of the Kodaira-type vanishing theorems for Higgs bundles due to Arapura. To prove our vanishing theorem, we construct a fine resolution of the Dolbeault complex for tame harmonic bundles via the complex of sheaves of $L^2$-forms, and we establish the Hörmander $L^2$-estimate and solve $(\bar {\partial }_E+\theta )$-equations for Higgs bundles $(E,\theta )$.
This paper explores the cohomological consequences of the existence of moduli spaces for flat bundles with bounded rank and irregularity at infinity and gives unconditional proofs. Namely, we prove the existence of a universal bound for the dimension of de Rham cohomology of flat bundles with bounded rank and irregularity on surfaces. In any dimension, we prove a Lefschetz recognition principle stating the existence of hyperplane sections distinguishing flat bundles with bounded rank and irregularity after restriction. We obtain in any dimension a universal bound for the degrees of the turning loci of flat bundles with bounded rank and irregularity. Along the way, we introduce a new operation on the group of $b$-divisors on a smooth surface (the partial discrepancy) and prove a closed formula for the characteristic cycles of flat bundles on surfaces in terms of the partial discrepancy of the irregularity $b$-divisor attached to any flat bundle by Kedlaya.
Let $f:X\to Y$ be a surjective projective map, and let L be a holomorphic line bundle on X equipped with a (singular) semi-positive Hermitian metric h. In this article, by studying the canonical metric on the direct image sheaf of the twisted relative canonical bundles $K_{X/Y}\otimes L\otimes \mathscr {I}(h)$, we obtain that this metric has dual Nakano semi-positivity when h is smooth and there is no deformation by f and that this metric has locally Nakano semi-positivity in the singular sense when h is singular.
We study the Abel-Jacobi image of the Ceresa cycle $W_{k, e}-W_{k, e}^-$, where $W_{k, e}$ is the image of the k-th symmetric product of a curve X with a base point e on its Jacobian variety. For certain Fermat quotient curves of genus g, we prove that for any choice of the base point and $k \leq g-2$, the Abel-Jacobi image of the Ceresa cycle is non-torsion. In particular, these cycles are non-torsion modulo rational equivalence.
We compute the Jantzen filtration of a $\mathcal {D}$-module on the flag variety of $\operatorname {\mathrm {SL}}_2(\mathbb {C})$. At each step in the computation, we illustrate the $\mathfrak {sl}_2(\mathbb {C})$-module structure on global sections to give an algebraic picture of this geometric computation. We conclude by showing that the Jantzen filtration on the $\mathcal {D}$-module agrees with the algebraic Jantzen filtration on its global sections, demonstrating a famous theorem of Beilinson and Bernstein.