To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Grothendieck duality theory assigns to essentially finite-type maps $f$ of noetherian schemes a pseudofunctor $f^{\times }$ right-adjoint to $\mathsf{R}f_{\ast }$, and a pseudofunctor $f^{!}$ agreeing with $f^{\times }$ when $f$ is proper, but equal to the usual inverse image $f^{\ast }$ when $f$ is étale. We define and study a canonical map from the first pseudofunctor to the second. This map behaves well with respect to flat base change, and is taken to an isomorphism by ‘compactly supported’ versions of standard derived functors. Concrete realizations are described, for instance for maps of affine schemes. Applications include proofs of reduction theorems for Hochschild homology and cohomology, and of a remarkable formula for the fundamental class of a flat map of affine schemes.
A special linear Grassmann variety $\text{SGr}(k,n)$ is the complement to the zero section of the determinant of the tautological vector bundle over $\text{Gr}(k,n)$. For an $SL$-oriented representable ring cohomology theory $A^{\ast }(-)$ with invertible stable Hopf map ${\it\eta}$, including Witt groups and $\text{MSL}_{{\it\eta}}^{\ast ,\ast }$, we have $A^{\ast }(\text{SGr}(2,2n+1))\cong A^{\ast }(pt)[e]/(e^{2n})$, and $A^{\ast }(\text{SGr}(k,n))$ is a truncated polynomial algebra over $A^{\ast }(pt)$ whenever $k(n-k)$ is even. A splitting principle for such theories is established. Using the computations for the special linear Grassmann varieties, we obtain a description of $A^{\ast }(\text{BSL}_{n})$ in terms of homogeneous power series in certain characteristic classes of tautological bundles.
We construct a cohomology theory using quasi-smooth derived schemes as generators and an analog of the bordism relation using derived fiber products as relations. This theory has pull-backs along all morphisms between smooth schemes independent of any characteristic assumptions. We prove that, in characteristic zero, the resulting theory agrees with algebraic cobordism as defined by Levine and Morel. We thus obtain a new set of generators and relations for algebraic cobordism.
Let $X$ be a compact Kähler manifold and let $(L,{\it\varphi})$ be a pseudo-effective line bundle on $X$. We first define a notion of numerical dimension for pseudo-effective line bundles with singular metrics, and then discuss the properties of this numerical dimension. Finally, we prove a very general Kawamata–Viehweg–Nadel-type vanishing theorem on an arbitrary compact Kähler manifold.
We construct a variant of Karoubi’s relative Chern character for smooth separated schemes over the ring of integers in a $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p$-adic field, and prove a comparison with the rigid syntomic regulator. For smooth projective schemes, we further relate the relative Chern character to the étale $p$-adic regulator via the Bloch–Kato exponential map. This reproves a result of Huber and Kings for the spectrum of the ring of integers, and generalizes it to all smooth projective schemes as above.
We show how a theorem of Gabber on alterations can be used to apply the work of Cisinski, Suslin, Voevodsky, and Weibel to prove that $K_n(X) \otimes \mathbb{Z}[{1}/{p}]= 0$ for$n < {-}\!\dim X$ where $X$ is a quasi-excellent noetherian scheme, $p$ is a prime that is nilpotent on $X$, and $K_n$ is the $K$-theory of Bass–Thomason–Trobaugh. This gives a partial answer to a question of Weibel.
We study products of irreducible theta divisors from two points of view. On the one hand, we characterize them as normal subvarieties of abelian varieties such that a desingularization has holomorphic Euler characteristic $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}1$. On the other hand, we identify them up to birational equivalence among all varieties of maximal Albanese dimension. We also describe the structure of varieties $X$ of maximal Albanese dimension, with holomorphic Euler characteristic $1$ and irregularity $2\dim X-1$.
We prove that exact functors between the categories of perfect complexes supported on projective schemes are of Fourier–Mukai type if the functor satisfies a condition weaker than being fully faithful. We also get generalizations of the results in the literature in the case without support conditions. Some applications are discussed and, along the way, we prove that the category of perfect supported complexes has a strongly unique enhancement.
We compute the Chow groups and the Fulton–MacPherson operational Chow cohomology ring for a class of singular rational varieties including toric varieties. The computation is closely related to the weight filtration on the ordinary cohomology of these varieties. We use the computation to answer one of the open problems about operational Chow cohomology: it does not have a natural map to ordinary cohomology.
The aim of this paper is to show that rigid syntomic cohomology – defined by Besser – is representable by a rational ring spectrum in the motivic homotopical sense. In fact, extending previous constructions, we exhibit a simple representability criterion and we apply it to several cohomologies in order to get our central result. This theorem gives new results for rigid syntomic cohomology such as h-descent and the compatibility of cycle classes with Gysin morphisms. Along the way, we prove that motivic ring spectra induce a complete Bloch–Ogus cohomological formalism and even more. Finally, following a general motivic homotopical philosophy, we exhibit a natural notion of rigid syntomic coefficients.
We study the action of the formal affine Hecke algebra on the formal group algebra, and show that the the formal affine Hecke algebra has a basis indexed by the Weyl group as a module over the formal group algebra. We also define a concept called the normal formal group law, which we use to simplify the relations of the generators of the formal affine Demazure algebra and the formal affine Hecke algebra.
Let $X$ be a smooth proper curve over a finite field of characteristic $p$. We prove a product formula for $p$-adic epsilon factors of arithmetic $\mathscr{D}$-modules on $X$. In particular we deduce the analogous formula for overconvergent $F$-isocrystals, which was conjectured previously. The $p$-adic product formula is a counterpart in rigid cohomology of the Deligne–Laumon formula for epsilon factors in $\ell$-adic étale cohomology (for $\ell \neq p$). One of the main tools in the proof of this $p$-adic formula is a theorem of regular stationary phase for arithmetic $\mathscr{D}$-modules that we prove by microlocal techniques.
We introduce a new class of autoequivalences that act on the derived categories of certain vector bundles over Grassmannians. These autoequivalences arise from Grassmannian flops: they generalize Seidel–Thomas spherical twists, which can be seen as arising from standard flops. We first give a simple algebraic construction, which is well suited to explicit computations. We then give a geometric construction using spherical functors which we prove is equivalent.
We consider the natural $A_{\infty }$-structure on the $\mathrm{Ext}$-algebra $\mathrm{Ext}^*(G,G)$ associated with the coherent sheaf $G=\mathcal{O}_C\oplus \mathcal{O}_{p_1}\oplus \cdots \oplus \mathcal{O}_{p_n}$ on a smooth projective curve $C$, where $p_1,\ldots,p_n\in C$ are distinct points. We study the homotopy class of the product $m_3$. Assuming that $h^0(p_1+\cdots +p_n)=1$, we prove that $m_3$ is homotopic to zero if and only if $C$ is hyperelliptic and the points $p_i$ are Weierstrass points. In the latter case we show that $m_4$ is not homotopic to zero, provided the genus of $C$ is greater than $1$. In the case $n=g$ we prove that the $A_{\infty }$-structure is determined uniquely (up to homotopy) by the products $m_i$ with $i\le 6$. Also, in this case we study the rational map $\mathcal{M}_{g,g}\to \mathbb{A}^{g^2-2g}$ associated with the homotopy class of $m_3$. We prove that for $g\ge 6$ it is birational onto its image, while for $g\le 5$ it is dominant. We also give an interpretation of this map in terms of tangents to $C$ in the canonical embedding and in the projective embedding given by the linear series $|2(p_1+\cdots +p_g)|$.
Let $k$ be a base commutative ring, $R$ a commutative ring of coefficients, $X$ a quasi-compact quasi-separated $k$-scheme, and $A$ a sheaf of Azumaya algebras over $X$ of rank $r$. Under the assumption that $1/r\in R$, we prove that the noncommutative motives with $R$-coefficients of $X$ and $A$ are isomorphic. As an application, we conclude that a similar isomorphism holds for every $R$-linear additive invariant. This leads to several computations. Along the way we show that, in the case of finite-dimensional algebras of finite global dimension, all additive invariants are nilinvariant.
For any subfield $K\subseteq \mathbb{C}$, not contained in an imaginary quadratic extension of $\mathbb{Q}$, we construct conjugate varieties whose algebras of $K$-rational ($p,p$)-classes are not isomorphic. This compares to the Hodge conjecture which predicts isomorphisms when $K$ is contained in an imaginary quadratic extension of $\mathbb{Q}$; additionally, it shows that the complex Hodge structure on the complex cohomology algebra is not invariant under the Aut($\mathbb{C}$)-action on varieties. In our proofs, we find simply connected conjugate varieties whose multilinear intersection forms on $H^{2}(-,\mathbb{R})$ are not (weakly) isomorphic. Using these, we detect nonhomeomorphic conjugate varieties for any fundamental group and in any birational equivalence class of dimension $\geq $10.
We obtain, via the formalism of tensor actions, a complete classification of the localizing subcategories of the stable derived category of any affine scheme that has hypersurface singularities or is a complete intersection in a regular scheme; in particular, this classifies the thick subcategories of the singularity categories of such rings. The analogous result is also proved for certain locally complete intersection schemes. It is also shown that from each of these classifications one can deduce the (relative) telescope conjecture.
In this paper we examine different problems regarding complete intersection varieties of high multidegree in a smooth complex projective variety. First we prove an existence theorem for jet differential equations that generalizes a theorem of Diverio. Then we show how one can deduce hyperbolicity for generic complete intersections of high multidegree and high codimension from the known results on hypersurfaces. Finally, motivated by a conjecture of Debarre, we focus on the positivity of the cotangent bundle of complete intersections, and prove some results towards this conjecture; among other things, we prove that a generic complete intersection surface of high multidegree in a projective space of dimension at least four has an ample cotangent bundle.
In this work, we describe a method to construct the generic braid monodromy of the preimage of a curve by a Kummer cover. This method is interesting since it combines two techniques, namely, the construction of a highly non-generic braid monodromy and a systematic method to go from a non-generic to a generic braid monodromy. The latter process, called generification, is independent from Kummer covers, and it can be applied in more general circumstances since non-generic braid monodromies appear more naturally and are oftentimes much easier to compute. Explicit examples are computed using these techniques.