We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this paper is to show that rigid syntomic cohomology – defined by Besser – is representable by a rational ring spectrum in the motivic homotopical sense. In fact, extending previous constructions, we exhibit a simple representability criterion and we apply it to several cohomologies in order to get our central result. This theorem gives new results for rigid syntomic cohomology such as h-descent and the compatibility of cycle classes with Gysin morphisms. Along the way, we prove that motivic ring spectra induce a complete Bloch–Ogus cohomological formalism and even more. Finally, following a general motivic homotopical philosophy, we exhibit a natural notion of rigid syntomic coefficients.
We study the action of the formal affine Hecke algebra on the formal group algebra, and show that the the formal affine Hecke algebra has a basis indexed by the Weyl group as a module over the formal group algebra. We also define a concept called the normal formal group law, which we use to simplify the relations of the generators of the formal affine Demazure algebra and the formal affine Hecke algebra.
Let $X$ be a smooth proper curve over a finite field of characteristic $p$. We prove a product formula for $p$-adic epsilon factors of arithmetic $\mathscr{D}$-modules on $X$. In particular we deduce the analogous formula for overconvergent $F$-isocrystals, which was conjectured previously. The $p$-adic product formula is a counterpart in rigid cohomology of the
Deligne–Laumon formula for epsilon factors in $\ell$-adic étale cohomology (for $\ell \neq p$). One of the main tools in the proof of this $p$-adic formula is a theorem of regular stationary phase for
arithmetic $\mathscr{D}$-modules that we prove by microlocal techniques.
We introduce a new class of autoequivalences that act on the derived categories of certain vector bundles over Grassmannians. These autoequivalences arise from Grassmannian flops: they generalize Seidel–Thomas spherical twists, which can be seen as arising from standard flops. We first give a simple algebraic construction, which is well suited to explicit computations. We then give a geometric construction using spherical functors which we prove is equivalent.
We consider the natural $A_{\infty }$-structure on the $\mathrm{Ext}$-algebra $\mathrm{Ext}^*(G,G)$ associated with the coherent sheaf $G=\mathcal{O}_C\oplus \mathcal{O}_{p_1}\oplus \cdots \oplus \mathcal{O}_{p_n}$ on a smooth projective curve $C$, where $p_1,\ldots,p_n\in C$ are distinct points. We study the homotopy class of the product $m_3$. Assuming that $h^0(p_1+\cdots +p_n)=1$, we prove that $m_3$ is homotopic to zero if and only if $C$ is hyperelliptic and the points $p_i$ are Weierstrass points. In the latter case we show that $m_4$ is not homotopic to zero, provided the genus of $C$ is greater than $1$. In the case $n=g$ we prove that the $A_{\infty }$-structure is determined uniquely (up to homotopy) by the products $m_i$ with $i\le 6$. Also, in this case we study the rational map $\mathcal{M}_{g,g}\to \mathbb{A}^{g^2-2g}$ associated with the homotopy class of $m_3$. We prove that for $g\ge 6$ it is birational onto its image, while for $g\le 5$ it is dominant. We also give an interpretation of this map in terms of tangents to $C$ in the canonical embedding and in the projective embedding given by the linear series $|2(p_1+\cdots +p_g)|$.
Let $k$ be a base commutative ring, $R$ a commutative ring of coefficients, $X$ a quasi-compact quasi-separated $k$-scheme, and $A$ a sheaf of Azumaya algebras over $X$ of rank $r$. Under the assumption that $1/r\in R$, we prove that the noncommutative motives with $R$-coefficients of $X$ and $A$ are isomorphic. As an application, we conclude that a similar
isomorphism holds for every $R$-linear additive invariant. This leads to several computations.
Along the way we show that, in the case of finite-dimensional algebras of finite
global dimension, all additive invariants are nilinvariant.
For any subfield $K\subseteq \mathbb{C}$, not contained in an imaginary quadratic extension of $\mathbb{Q}$, we construct conjugate varieties whose algebras of $K$-rational ($p,p$)-classes are not isomorphic. This compares to the Hodge conjecture which predicts isomorphisms when $K$ is contained in an imaginary quadratic extension of $\mathbb{Q}$; additionally, it shows that the complex Hodge structure on the complex cohomology algebra is not invariant under the Aut($\mathbb{C}$)-action on varieties. In our proofs, we find simply connected conjugate varieties whose multilinear intersection forms on $H^{2}(-,\mathbb{R})$ are not (weakly) isomorphic. Using these, we detect nonhomeomorphic conjugate varieties for any fundamental group and in any birational equivalence class of dimension $\geq $10.
We obtain, via the formalism of tensor actions, a complete classification of the localizing subcategories of the stable derived category of any affine scheme that has hypersurface singularities or is a complete intersection in a regular scheme; in particular, this classifies the thick subcategories of the singularity categories of such rings. The analogous result is also proved for certain locally complete intersection schemes. It is also shown that from each of these classifications one can deduce the (relative) telescope conjecture.
In this paper we examine different problems regarding complete intersection varieties of high multidegree in a smooth complex projective variety. First we prove an existence theorem for jet differential equations that generalizes a theorem of Diverio. Then we show how one can deduce hyperbolicity for generic complete intersections of high multidegree and high codimension from the known results on hypersurfaces. Finally, motivated by a conjecture of Debarre, we focus on the positivity of the cotangent bundle of complete intersections, and prove some results towards this conjecture; among other things, we prove that a generic complete intersection surface of high multidegree in a projective space of dimension at least four has an ample cotangent bundle.
In this work, we describe a method to construct the generic braid monodromy of the
preimage of a curve by a Kummer cover. This method is interesting since it combines
two techniques, namely, the construction of a highly non-generic braid monodromy and
a systematic method to go from a non-generic to a generic braid monodromy. The latter
process, called generification, is independent from Kummer covers,
and it can be applied in more general circumstances since non-generic braid
monodromies appear more naturally and are oftentimes much easier to compute. Explicit
examples are computed using these techniques.
We show that a standard conic bundle over a minimal rational surface is rational and its Jacobian splits as the direct sum of Jacobians of curves if and only if its derived category admits a semiorthogonal decomposition by exceptional objects and the derived categories of those curves. Moreover, such a decomposition gives the splitting of the intermediate Jacobian also when the surface is not minimal.
The purpose of this paper is twofold. We present first a vanishing theorem for families of linear series with base ideal being a fat points ideal. We then apply this result in order to give a partial proof of a conjecture raised by Bocci, Harbourne and Huneke concerning containment relations between ordinary and symbolic powers of planar point ideals.
Using the $\ell $-invariant constructed in our previous paper we prove a
Mazur–Tate–Teitelbaum-style formula for derivatives of $p$-adic $L$-functions of modular forms at trivial zeros. The novelty of this
result is to cover the near-central point case. In the central point case our formula
coincides with the Mazur–Tate–Teitelbaum conjecture proved by Greenberg and Stevens
and by Kato, Kurihara and Tsuji at the end of the 1990s.
In this paper, we introduce variants of formal nearby cycles for a locally noetherian formal scheme over a complete discrete valuation ring. If the formal scheme is locally algebraizable, then our nearby cycle gives a generalization of Berkovich’s formal nearby cycle. Our construction is entirely scheme theoretic, and does not require rigid geometry. Our theory is intended for applications to the local study of the cohomology of Rapoport–Zink spaces.
We define the notion of a trace kernel on a manifold $M$. Roughly speaking, it is a sheaf on $M\times M$ for which the formalism of Hochschild homology applies. We
associate a microlocal Euler class with such a kernel, a cohomology class with values
in the relative dualizing complex of the cotangent bundle ${T}^{\ast } M$ over $M$, and we prove that this class is functorial with respect to the
composition of kernels.
This generalizes, unifies and simplifies various results from (relative) index
theorems for constructible sheaves, $\mathscr{D}$-modules and elliptic pairs.
We show how the techniques of Voevodsky’s proof of the Milnor conjecture and the Voevodsky–Rost proof of its generalization the Bloch–Kato conjecture can be used to study counterexamples to the classical Lüroth problem. By generalizing a method due to Peyre, we produce for any prime number $\ell $ and any integer $n\geq 2$, a rationally connected, non-rational variety for which non-rationality is detected by a non-trivial degree $n$ unramified étale cohomology class with $\ell $-torsion coefficients. When $\ell = 2$, the varieties that are constructed are furthermore unirational and non-rationality cannot be detected by a torsion unramified étale cohomology class of lower degree.
We extend most of the results of generic vanishing theory to bundles of holomorphic forms and rank-one local systems, and more generally to certain coherent sheaves of Hodge-theoretic origin associated with irregular varieties. Our main tools are Saito’s mixed Hodge modules, the Fourier–Mukai transform for $\mathscr{D}$-modules on abelian varieties introduced by Laumon and Rothstein, and Simpson’s harmonic theory for flat bundles. In the process, we also discover two natural categories of perverse coherent sheaves.
Let $\mathfrak{a}$ be a homogeneous ideal of a polynomial ring $R$ in $n$ variables over a field $\mathbb{k}$. Assume that $\mathrm{depth} (R/ \mathfrak{a})\geq t$, where $t$ is some number in $\{ 0, \ldots , n\} $. A result of Peskine and Szpiro says that if $\mathrm{char} (\mathbb{k})\gt 0$, then the local cohomology modules ${ H}_{\mathfrak{a}}^{i} (M)$ vanish for all $i\gt n- t$ and all $R$-modules $M$. In characteristic $0$, there are counterexamples to this for all $t\geq 4$. On the other hand, when $t\leq 2$, by exploiting classical results of Grothendieck, Lichtenbaum, Hartshorne and Ogus it is not difficult to extend the result to any characteristic. In this paper we settle the remaining case; specifically, we show that if $\mathrm{depth} (R/ \mathfrak{a})\geq 3$, then the local cohomology modules ${ H}_{\mathfrak{a}}^{i} (M)$ vanish for all $i\gt n- 3$ and all $R$-modules $M$, whatever the characteristic of $\mathbb{k}$ is.
Let $K$ be a finitely generated extension of $\mathbb {Q}$. We consider the family of $\ell $-adic representations ($\ell $ varies through the set of all prime numbers) of the absolute Galois group of $K$, attached to $\ell $-adic cohomology of a separated scheme of finite type over $K$. We prove that the fields cut out from the algebraic closure of $K$by the kernels of the representations of the family are linearly disjoint over a finite extension of K. This gives a positive answer to a question of Serre.