To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The purpose of this paper is twofold. We present first a vanishing theorem for families of linear series with base ideal being a fat points ideal. We then apply this result in order to give a partial proof of a conjecture raised by Bocci, Harbourne and Huneke concerning containment relations between ordinary and symbolic powers of planar point ideals.
Using the $\ell $-invariant constructed in our previous paper we prove a Mazur–Tate–Teitelbaum-style formula for derivatives of $p$-adic $L$-functions of modular forms at trivial zeros. The novelty of this result is to cover the near-central point case. In the central point case our formula coincides with the Mazur–Tate–Teitelbaum conjecture proved by Greenberg and Stevens and by Kato, Kurihara and Tsuji at the end of the 1990s.
In this paper, we introduce variants of formal nearby cycles for a locally noetherian formal scheme over a complete discrete valuation ring. If the formal scheme is locally algebraizable, then our nearby cycle gives a generalization of Berkovich’s formal nearby cycle. Our construction is entirely scheme theoretic, and does not require rigid geometry. Our theory is intended for applications to the local study of the cohomology of Rapoport–Zink spaces.
We define the notion of a trace kernel on a manifold $M$. Roughly speaking, it is a sheaf on $M\times M$ for which the formalism of Hochschild homology applies. We associate a microlocal Euler class with such a kernel, a cohomology class with values in the relative dualizing complex of the cotangent bundle ${T}^{\ast } M$ over $M$, and we prove that this class is functorial with respect to the composition of kernels.
This generalizes, unifies and simplifies various results from (relative) index theorems for constructible sheaves, $\mathscr{D}$-modules and elliptic pairs.
We show how the techniques of Voevodsky’s proof of the Milnor conjecture and the Voevodsky–Rost proof of its generalization the Bloch–Kato conjecture can be used to study counterexamples to the classical Lüroth problem. By generalizing a method due to Peyre, we produce for any prime number $\ell $ and any integer $n\geq 2$, a rationally connected, non-rational variety for which non-rationality is detected by a non-trivial degree $n$ unramified étale cohomology class with $\ell $-torsion coefficients. When $\ell = 2$, the varieties that are constructed are furthermore unirational and non-rationality cannot be detected by a torsion unramified étale cohomology class of lower degree.
We extend most of the results of generic vanishing theory to bundles of holomorphic forms and rank-one local systems, and more generally to certain coherent sheaves of Hodge-theoretic origin associated with irregular varieties. Our main tools are Saito’s mixed Hodge modules, the Fourier–Mukai transform for $\mathscr{D}$-modules on abelian varieties introduced by Laumon and Rothstein, and Simpson’s harmonic theory for flat bundles. In the process, we also discover two natural categories of perverse coherent sheaves.
Let $\mathfrak{a}$ be a homogeneous ideal of a polynomial ring $R$ in $n$ variables over a field $\mathbb{k}$. Assume that $\mathrm{depth} (R/ \mathfrak{a})\geq t$, where $t$ is some number in $\{ 0, \ldots , n\} $. A result of Peskine and Szpiro says that if $\mathrm{char} (\mathbb{k})\gt 0$, then the local cohomology modules ${ H}_{\mathfrak{a}}^{i} (M)$ vanish for all $i\gt n- t$ and all $R$-modules $M$. In characteristic $0$, there are counterexamples to this for all $t\geq 4$. On the other hand, when $t\leq 2$, by exploiting classical results of Grothendieck, Lichtenbaum, Hartshorne and Ogus it is not difficult to extend the result to any characteristic. In this paper we settle the remaining case; specifically, we show that if $\mathrm{depth} (R/ \mathfrak{a})\geq 3$, then the local cohomology modules ${ H}_{\mathfrak{a}}^{i} (M)$ vanish for all $i\gt n- 3$ and all $R$-modules $M$, whatever the characteristic of $\mathbb{k}$ is.
Let $K$ be a finitely generated extension of $\mathbb {Q}$. We consider the family of $\ell $-adic representations ($\ell $ varies through the set of all prime numbers) of the absolute Galois group of $K$, attached to $\ell $-adic cohomology of a separated scheme of finite type over $K$. We prove that the fields cut out from the algebraic closure of $K$by the kernels of the representations of the family are linearly disjoint over a finite extension of K. This gives a positive answer to a question of Serre.
For a characteristic-$p\gt 0$ variety $X$ with controlled $F$-singularities, we state conditions which imply that a divisorial sheaf is Cohen–Macaulay or at least has depth $\geq $3 at certain points. This mirrors results of Kollár for varieties in characteristic 0. As an application, we show that relative canonical sheaves are compatible with arbitrary base change for certain families with sharply $F$-pure fibers.
Using the cohomology theory of Dwork, as developed by Adolphson and Sperber, we exhibit a deterministic algorithm to compute the zeta function of a nondegenerate hypersurface defined over a finite field. This algorithm is particularly well suited to work with polynomials in small characteristic that have few monomials (relative to their dimension). Our method covers toric, affine, and projective hypersurfaces, and also can be used to compute the L-function of an exponential sum.
We give a necessary and sufficient condition in order for a hyperplane arrangement to be of Torelli type, namely that it is recovered as the set of unstable hyperplanes of its Dolgachev sheaf of logarithmic differentials. Decompositions and semistability of non-Torelli arrangements are investigated.
We compute the center of the ring of PD differential operators on a smooth variety over ℤ/pnℤ, confirming a conjecture of Kaledin (private communication). More generally, given an associative algebra A0 over ℤp and its flat deformation An over ℤ/pn+1ℤ, we prove that under a certain non-degeneracy condition, the center of An is isomorphic to the ring of length-(n+1) Witt vectors over the center of A0.
A famous theorem of D. Orlov describes the derived bounded category of coherent sheaves on projective hypersurfaces in terms of an algebraic construction called graded matrix factorizations. In this article, I implement a proposal of E. Segal to prove Orlov’s theorem in the Calabi–Yau setting using a globalization of the category of graded matrix factorizations (graded D-branes). Let X⊂ℙ be a projective hypersurface. Segal has already established an equivalence between Orlov’s category of graded matrix factorizations and the category of graded D-branes on the canonical bundle Kℙ to ℙ. To complete the picture, I give an equivalence between the homotopy category of graded D-branes on Kℙ and Dbcoh(X). This can be achieved directly, as well as by deforming Kℙ to the normal bundle of X⊂Kℙ and invoking a global version of Knörrer periodicity. We also discuss an equivalence between graded D-branes on a general smooth quasiprojective variety and on the formal neighborhood of the singular locus of the zero fiber of the potential.
This paper introduces the notion of a derived splinter. Roughly speaking, a scheme is a derived splinter if it splits off from the coherent cohomology of any proper cover. Over a field of characteristic 0, this condition characterises rational singularities, as suggested by the work of Kovács. Our main theorem asserts that over a field of characteristic p, derived splinters are the same as (underived) splinters, i.e. schemes that split off from any finite cover. Using this result, we answer some questions of Karen Smith concerning the extension of Serre/Kodaira-type vanishing results beyond the class of ample line bundles in positive characteristic; these are purely projective geometric statements independent of singularity considerations. In fact, we can prove ‘up to finite cover’ analogues in characteristic p of many vanishing theorems known in characteristic 0. All these results fit naturally in the study of F-singularities, and are motivated by a desire to understand the direct summand conjecture.
We give bounds for the Betti numbers of projective algebraic varieties in terms of their classes (degrees of dual varieties of successive hyperplane sections). We also give bounds for classes in terms of ramification volumes (mixed ramification degrees), sectional genus and, eventually, in terms of dimension, codimension and degree. For varieties whose degree is large with respect to codimension, we give sharp bounds for the above invariants and classify the varieties on the boundary, thus obtaining a generalization of Castelnuovo’s theory for curves to varieties of higher dimension.
The tempered fundamental group of a p-adic variety classifies analytic étale covers that become topological covers for Berkovich topology after pullback by some finite étale cover. This paper constructs cospecialization homomorphisms between the (p′) versions of the tempered fundamental group of the fibers of a smooth morphism with polystable reduction. We study the question for families of curves in another paper. To construct them, we will start by describing the pro-(p′) tempered fundamental group of a smooth and proper variety with polystable reduction in terms of the reduction endowed with its log structure, thus defining tempered fundamental groups for log polystable varieties.
In [M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Preprint (2011), arXiv:1006.2706v2[math.AG]], the authors, in particular, associate to each finite quiver Q with a set of vertices I the so-called cohomological Hall algebra ℋ, which is ℤI≥0-graded. Its graded component ℋγ is defined as cohomology of the Artin moduli stack of representations with dimension vector γ. The product comes from natural correspondences which parameterize extensions of representations. In the case of a symmetric quiver, one can refine the grading to ℤI≥0×ℤ, and modify the product by a sign to get a super-commutative algebra (ℋ,⋆)(with parity induced by the ℤ-grading). It is conjectured in [M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Preprint (2011), arXiv:1006.2706v2[math.AG]] that in this case the algebra (ℋ⊗ℚ,⋆)is free super-commutative generated by a ℤI≥0×ℤ-graded vector space of the form V =Vprim ⊗ℚ[x] , where x is a variable of bidegree (0,2)∈ℤI≥0×ℤ, and all the spaces ⨁ k∈ℤVprimγ,k, γ∈ℤI≥0. are finite-dimensional. In this paper we prove this conjecture (Theorem 1.1). We also prove some explicit bounds on pairs (γ,k)for which Vprimγ,k≠0(Theorem 1.2). Passing to generating functions, we obtain the positivity result for quantum Donaldson–Thomas invariants, which was used by Mozgovoy to prove Kac’s conjecture for quivers with sufficiently many loops [S. Mozgovoy, Motivic Donaldson–Thomas invariants and Kac conjecture, Preprint (2011), arXiv:1103.2100v2[math.AG]]. Finally, we mention a connection with the paper of Reineke [M. Reineke, Degenerate cohomological Hall algebra and quantized Donaldson–Thomas invariants for m-loop quivers, Preprint (2011), arXiv:1102.3978v1[math.RT]].
In this article, we apply the methods of our work on Fontaine’s theory in equal characteristics to the φ/𝔖-modules of Breuil and Kisin. Thanks to a previous article of Kisin, this yields a new and rather elementary proof of the theorem ‘weakly admissible implies admissible’ of Colmez and Fontaine.
The S-fundamental group scheme is the group scheme corresponding to the Tannaka category of numerically flat vector bundles. We use determinant line bundles to prove that the S-fundamental group of a product of two complete varieties is a product of their S-fundamental groups as conjectured by Mehta and the author. We also compute the abelian part of the S-fundamental group scheme and the S-fundamental group scheme of an abelian variety or a variety with trivial étale fundamental group.