We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that on separated algebraic surfaces every coherent sheaf is a quotient of a locally free sheaf. This class contains many schemes that are neither normal, reduced, quasiprojective nor embeddable into toric varieties. Our methods extend to arbitrary two-dimensional schemes that are proper over an excellent ring.
In this work, we study the intersection cohomology of Siegel modular varieties. The goal is to express the trace of a Hecke operator composed with a power of the Frobenius endomorphism (at a good place) on this cohomology in terms of the geometric side of Arthur’s invariant trace formula for well-chosen test functions. Our main tools are the results of Kottwitz about the contribution of the cohomology with compact support and about the stabilization of the trace formula, Arthur’s L2 trace formula and the fixed point formula of Morel [Complexes pondérés sur les compactifications de Baily–Borel. Le cas des variétés de Siegel, J. Amer. Math. Soc. 21 (2008), 23–61]. We ‘stabilize’ this last formula, i.e. express it as a sum of stable distributions on the general symplectic groups and its endoscopic groups, and obtain the formula conjectured by Kottwitz in [Shimura varieties and λ-adic representations, in Automorphic forms, Shimura varieties and L-functions, Part I, Perspectives in Mathematics, vol. 10 (Academic Press, San Diego, CA, 1990), 161–209]. Applications of the results of this article have already been given by Kottwitz, assuming Arthur’s conjectures. Here, we give weaker unconditional applications in the cases of the groups GSp4 and GSp6.
Let 𝒱 be a mixed characteristic complete discrete valuation ring with perfect residue field k. We solve Berthelot’s conjectures on the stability of the holonomicity over smooth projective formal 𝒱-schemes. Then we build a category of F-complexes of arithmetic 𝒟-modules over quasi-projective k-varieties with bounded and holonomic cohomology. We obtain its stability under Grothendieck’s six operations.
This work establishes a comparison between functions on derived loop spaces (Toën and Vezzosi, Chern character, loop spaces and derived algebraic geometry, in Algebraic topology: the Abel symposium 2007, Abel Symposia, vol. 4, eds N. Baas, E. M. Friedlander, B. Jahren and P. A. Østvær (Springer, 2009), ISBN:978-3-642-01199-3) and de Rham theory. If A is a smooth commutative k-algebra and k has characteristic 0, we show that two objects, S1⊗A and ϵ(A), determine one another, functorially in A. The object S1⊗A is the S1-equivariant simplicial k-algebra obtained by tensoring A by the simplicial group S1 :=Bℤ, while the object ϵ(A)is the de Rham algebra of A, endowed with the de Rham differential, and viewed as a ϵ-dg-algebra (see the main text). We define an equivalence φ between the homotopy theory of simplicial commutative S1-equivariant k-algebras and the homotopy theory of ϵ-dg-algebras, and we show the existence of a functorial equivalence ϕ(S1 ⊗A)∼ϵ(A) . We deduce from this the comparison mentioned above, identifying the S1-equivariant functions on the derived loop space LX of a smooth k-scheme X with the algebraic de Rham cohomology of X/k. As corollaries, we obtain functorial and multiplicative versions of decomposition theorems for Hochschild homology (in the spirit of Hochschild–Kostant–Rosenberg) for arbitrary semi-separated k-schemes. By construction, these decompositions are moreover compatible with the S1-action on the Hochschild complex, on one hand, and with the de Rham differential, on the other hand.
Bondarko defines and studies the notion of weight structure and he shows that there exists a weight structure over the category of Voevodsky motives with rational coefficients (over a field of characteristic 0). In this paper we extend this weight structure to the category of Beilinson motives (for any scheme of finite type over a base scheme which is excellent of dimension at most two) introduced and studied by Cisinsky and Déglise. We also check the weight exactness of the Grothendieck operations.
Here we classify the weakly uniform rank two vector bundles on multiprojective spaces. Moreover, we show that every rank r>2 weakly uniform vector bundle with splitting type a1,1=⋯=ar,s=0 is trivial and every rank r>2 uniform vector bundle with splitting type a1>⋯>ar splits.
The main goal of this paper is to deduce (from a recent resolution of singularities result of Gabber) the following fact: (effective) Chow motives with ℤ[1/p]-coefficients over a perfect field k of characteristic p generate the category DMeffgm[1/p] (of effective geometric Voevodsky’s motives with ℤ[1/p]-coefficients). It follows that DMeffgm[1/p] can be endowed with a Chow weight structure wChow whose heart is Choweff[1/p] (weight structures were introduced in a preceding paper, where the existence of wChow for DMeffgmℚ was also proved). As shown in previous papers, this statement immediately yields the existence of a conservative weight complex functor DMeffgm[1/p]→Kb (Choweff [1/p])(which induces an isomorphism on K0-groups), as well as the existence of canonical and functorial (Chow)-weight spectral sequences and weight filtrations for any cohomology theory on DMeffgm[1/p] . We also mention a certain Chow t-structure for DMeff−[1/p]and relate it with unramified cohomology.
In this article we consider exceptional sequences of invertible sheaves on smooth complete rational surfaces. We show that to every such sequence one can associate a smooth complete toric surface in a canonical way. We use this structural result to prove various theorems on exceptional and strongly exceptional sequences of invertible sheaves on rational surfaces. We construct full strongly exceptional sequences for a large class of rational surfaces. For the case of toric surfaces we give a complete classification of full strongly exceptional sequences of invertible sheaves.
We complete our proof that given an overconvergent F-isocrystal on a variety over a field of positive characteristic, one can pull back along a suitable generically finite cover to obtain an isocrystal which extends, with logarithmic singularities and nilpotent residues, to some complete variety. We also establish an analogue for F-isocrystals overconvergent inside a partial compactification. By previous results, this reduces to solving a local problem in a neighborhood of a valuation of height 1 and residual transcendence degree zero. We do this by studying the variation of some numerical invariants attached to p-adic differential modules, analogous to the irregularity of a complex meromorphic connection. This allows for an induction on the transcendence defect of the valuation, i.e., the discrepancy between the dimension of the variety and the rational rank of the valuation.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let 𝔤 be its Lie algebra. Let k(G), respectively, k(𝔤), be the field of k-rational functions on G, respectively, 𝔤. The conjugation action of G on itself induces the adjoint action of G on 𝔤. We investigate the question whether or not the field extensions k(G)/k(G)G and k(𝔤)/k(𝔤)G are purely transcendental. We show that the answer is the same for k(G)/k(G)G and k(𝔤)/k(𝔤)G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type An or Cn, and negative for groups of other types, except possibly G2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Laumon introduced the local Fourier transform for ℓ-adic Galois representations of local fields, of equal characteristic p different from ℓ, as a powerful tool for studying the Fourier–Deligne transform of ℓ-adic sheaves over the affine line. In this article, we compute explicitly the local Fourier transform of monomial representations satisfying a certain ramification condition, and deduce Laumon’s formula relating the ε-factor to the determinant of the local Fourier transform under the same condition.
This paper studies affine Deligne–Lusztig varieties in the affine flag manifold of a split group. Among other things, it proves emptiness for certain of these varieties, relates some of them to those for Levi subgroups, and extends previous conjectures concerning their dimensions. We generalize the superset method, an algorithmic approach to the questions of non-emptiness and dimension. Our non-emptiness results apply equally well to the p-adic context and therefore relate to moduli of p-divisible groups and Shimura varieties with Iwahori level structure.
Let K be a complete discrete valuation field of mixed characteristic (0,p) with a perfect residue field k. For a semi-stable scheme over the ring of integers OK of K or, more generally, for a log smooth scheme of semi-stable type over k, we define nearby cycles as a single 𝒟-module endowed with a monodromy ∂logt, whose cohomology should give the log crystalline cohomology. We also explicitly describe the monodromy filtration of the 𝒟-module with respect to the endomorphism ∂logt, and construct a weight spectral sequence for the cohomology of the nearby cycles.
Using a local construction from a previous paper, we exhibit a numerical invariant, the differential Swan conductor, for an isocrystal on a variety over a perfect field of positive characteristic overconvergent along a boundary divisor; this leads to an analogous construction for certain p-adic and l-adic representations of the étale fundamental group of a variety. We then demonstrate some variational properties of this definition for overconvergent isocrystals, paying special attention to the case of surfaces.
Katz’s middle convolution algorithm provides a description of rigid connections on ℙ1 with regular singularities. We extend the algorithm by adding the Fourier transform to it. The extended algorithm provides a description of rigid connections with arbitrary singularities.
Using the middle convolution functor MCχ introduced by N. Katz, we prove the existence of rigid local systems whose monodromy is dense in the simple algebraic group G2. We derive the existence of motives for motivated cycles which have a motivic Galois group of type G2. Granting Grothendieck’s standard conjectures, the existence of motives with motivic Galois group of type G2 can be deduced, giving a partial answer to a question of Serre.
In this paper, we define Swan conductors for unit-root overconvergent F-isocrystals using the theory of arithmetic 𝒟-modules due to Berthelot. Our Swan conductors are compared with the Swan conductors for ℓ-adic sheaves constructed by Kato and Saito using a geometric method. As an application, we prove the integrality of Swan conductors in the sense of Kato and Saito under the ‘resolution of singularities’ assumption.
Let X be a smooth projective variety defined over an algebraically closed field k. Nori constructed a category of vector bundles on X, called essentially finite vector bundles, which is reminiscent of the category of representations of the fundamental group (in characteristic zero). In fact, this category is equivalent to the category of representations of a pro-finite group scheme which controls all finite torsors. We show that essentially finite vector bundles coincide with those which become trivial after being pulled back by some proper and surjective morphism to X.
We show that the limit of a one-parameter admissible normal function with no singularities lies in a non-classical sub-object of the limiting intermediate Jacobian. Using this, we construct a Hausdorff slit analytic space, with complex Lie group fibres, which ‘graphs’ such normal functions. For singular normal functions, an extension of the sub-object by a finite group leads to the Néron models. When the normal function comes from geometry, that is, a family of algebraic cycles on a semistably degenerating family of varieties, its limit may be interpreted via the Abel–Jacobi map on motivic cohomology of the singular fibre, hence via regulators on K-groups of its substrata. Two examples are worked out in detail, for families of 1-cycles on CY and abelian 3-folds, where this produces interesting arithmetic constraints on such limits. We also show how to compute the finite ‘singularity group’ in the geometric setting.
We introduce in this paper a hypercohomology version of the resonance varieties and obtain some relations to the characteristic varieties of rank one local systems on a smooth quasi-projective complex variety M. A logarithmic resonance variety is also considered and, as an application, we determine the first characteristic variety of the configuration space of n distinct labeled points on an elliptic curve. Finally, for a logarithmic 1-form α on M we investigate the relation between the resonance degree of α and the codimension of the zero set of α on a good compactification of M. This question was inspired by the recent work by Cohen, Denham, Falk and Varchenko.