We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The notion of effective topological complexity, introduced by Błaszczyk and Kaluba, deals with using group actions in the configuration space in order to reduce the complexity of the motion planning algorithm. In this article, we focus on studying several properties of this notion of topological complexity. We introduce a notion of effective LS category which mimics the behaviour the usual LS category has in the non-effective setting. We use it to investigate the relationship between these effective invariants and the orbit map with respect to the group action, and we give numerous examples. Additionally, we investigate non-vanishing criteria based on a cohomological dimension bound of the saturated diagonal.
In this paper, we define and study an equivariant analogue of Cohen, Farber and Weinberger’s parametrized topological complexity. We show that several results in the non-equivariant case can be extended to the equivariant case. For example, we establish the fibrewise equivariant homotopy invariance of the sequential equivariant parametrized topological complexity. We obtain several bounds on sequential equivariant topological complexity involving the equivariant category. We also obtain the cohomological lower bound and the dimension-connectivity upper bound on the sequential equivariant parametrized topological complexity. In the end, we use these results to compute the sequential equivariant parametrized topological complexity of equivariant Fadell–Neuwirth fibrations and some equivariant fibrations involving generalized projective product spaces.
We introduce the notion of the equivariant covering type of a space X on which a finite group G acts and study its properties. The equivariant covering type measures the size of G-equivariant good covers of X and is thus an extension of the covering type of a space, introduced by Karoubi and Weibel. We show that the equivariant covering type is a G-homotopy invariant and describe its relation with other G-invariants, like the equivariant LS-category, G-genus, and the multiplicative structures of equivariant cohomology theories. We also compute the G-covering type of regular G-graphs, give estimates for orientation-preserving actions on surfaces and for the projectivizations of complex representations of G and cohomology spheres. As an application, we derive estimates of sizes of minimal G-triangulations for various G-spaces.
In this paper, we provide sufficient conditions for a space X to satisfy the Ganea conjecture for topological complexity. To achieve this, we employ two auxiliary invariants: weak topological complexity in the sense of Berstein–Hilton, along with a certain stable version of it. Several examples are discussed.
Let $G$ be a split semisimple group over a global function field $K$. Given a cuspidal automorphic representation $\Pi$ of $G$ satisfying a technical hypothesis, we prove that for almost all primes $\ell$, there is a cyclic base change lifting of $\Pi$ along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $K$. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group $G$ over a local function field $F$, and almost all primes $\ell$, any irreducible admissible representation of $G(F)$ admits a base change along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $F$. Finally, we characterize local base change more explicitly for a class of toral representations considered in work of Chan and Oi.
Let $h : \mathbb{R}^2 \to \mathbb{R}^2$ be an orientation preserving homeomorphism of the plane. For any bounded orbit $\mathcal{O}(x)=\{h^n(x):n\in\mathbb{Z}\}$ there exists a fixed point $p\in\mathbb{R}^2$ of h linked to $\mathcal{O}(x)$ in the sense of Gambaudo: one cannot find a Jordan curve $C\subseteq\mathbb{R}^2$ around $\mathcal{O}(x)$, separating it from p, that is isotopic to h(C) in $\mathbb{R}^2\setminus\left(\mathcal{O}(x)\cup\{p\}\right)$.
Given maps $f_1,\ldots ,f_n:X\to Y$ between (finite and connected) graphs, with $n\geq 3$ (the case $n=2$ is well known), we say that they are loose if they can be deformed by homotopy to coincidence free maps, and totally loose if they can be deformed by homotopy to maps which are two by two coincidence free. We prove that: (i) if Y is not homeomorphic to the circle, then any maps are totally loose; (ii) otherwise, any maps are loose and they are totally loose if and only if they are homotopic.
In this paper, we compute the LS-category and equivariant LS-category of a small cover and its real moment angle manifold. We calculate a tight lower bound for the topological complexity of many small covers over a product of simplices. Then we compute symmetric topological complexity of several small covers over a product of simplices. We calculate the LS one-category of real Bott manifolds and infinitely many small covers.
For a finite group $G$ of not prime power order, Oliver showed that the obstruction for a finite CW-complex $F$ to be the fixed point set of a contractible finite $G$-CW-complex is determined by the Euler characteristic $\chi (F)$. (He also has similar results for compact Lie group actions.) We show that the analogous problem for $F$ to be the fixed point set of a finite $G$-CW-complex of some given homotopy type is still determined by the Euler characteristic. Using trace maps on $K_0$ [2, 7, 18], we also see that there are interesting roles for the fundamental group and the component structure of the fixed point set.
In this paper, we study the relationship of the Brouwer degree of a vector field with the dynamics of the induced flow. Analogous relations are studied for the index of a vector field. We obtain new forms of the Poincar é–Hopf theorem and of the Borsuk and Hirsch antipodal theorems. As an application, we calculate the Brouwer degree of the vector field of the Lorenz equations in isolating blocks of the Lorenz strange set.
A theorem of Brady and Meier states that a right-angled Artin group is a duality group if and only if the flag complex of the defining graph is Cohen–Macaulay. We use this to give an example of a RAAG with the property that its outer automorphism group is not a virtual duality group. This gives a partial answer to a question of Vogtmann. In an appendix, Brück describes how he used a computer-assisted search to find further examples.
Let W be a real vector space and let V be an orthogonal representation of a group G such that
$V^{G} = \{0\}$
(for the set of fixed points of G). Let
$S(V)$
be the sphere of V and suppose that
$f: S(V) \to W$
is a continuous map. We estimate the size of the
$(H, G)$
-coincidences set if G is a cyclic group of prime power order
$\mathbb {Z}_{p^k}$
or a p-torus
$\mathbb {Z}_p^k$
.
We compute the generator rank of a subhomogeneous $C^*\!$-algebra in terms of the covering dimension of the pieces of its primitive ideal space corresponding to irreducible representations of a fixed dimension. We deduce that every $\mathcal {Z}$-stable approximately subhomogeneous algebra has generator rank one, which means that a generic element in such an algebra is a generator.
This leads to a strong solution of the generator problem for classifiable, simple, nuclear $C^*\!$-algebras: a generic element in each such algebra is a generator. Examples of Villadsen show that this is not the case for all separable, simple, nuclear $C^*\!$-algebras.
There is a problem with the proofs of [1], Lemma 4.4 and the related Theorems 4.5, 4.8 and 4.12 regarding the computation of zero-divisor cup-length of real Grassmann manifolds ${G_k({{\mathbb {R}}}^{n})}$. The correct statements and improved estimates of the topological complexity of ${G_k({{\mathbb {R}}}^{n})}$ will appear in a separate paper by M. Radovanović [2].
Topological complexity naturally appears in the motion planning in robotics. In this paper we consider the problem of finding topological complexity of real Grassmann manifolds $G_k(\mathbb {R}^{n})$. We use cohomology methods to give estimates on the zero-divisor cup-length of $G_k(\mathbb {R}^{n})$ for various $2\leqslant k< n$, which in turn give us lower bounds on topological complexity. Our results correct and improve several results from Pavešić (Proc. Roy. Soc. Edinb. A151 (2021), 2013–2029).
We compute the cohomology rings of smooth real toric varieties and of real toric spaces, which are quotients of real moment-angle complexes by freely acting subgroups of the ambient 2-torus. The differential graded algebra (dga) we present is in fact an equivariant dga model, valid for arbitrary coefficients. We deduce from our description that smooth toric varieties are $\hbox{M}$-varieties.
Let $X^{n}$ be an oriented closed generalized $n$-manifold, $n\ge 5$. In our recent paper (Proc. Edinb. Math. Soc. (2) 63 (2020), no. 2, 597–607), we have constructed a map $t:\mathcal {N}(X^{n}) \to H^{st}_{n} ( X^{n}; \mathbb{L}^{+})$ which extends the normal invariant map for the case when $X^{n}$ is a topological $n$-manifold. Here, $\mathcal {N}(X^{n})$ denotes the set of all normal bordism classes of degree one normal maps $(f,\,b): M^{n} \to X^{n},$ and $H^{st}_{*} ( X^{n}; \mathbb{E})$ denotes the Steenrod homology of the spectrum $\mathbb{E}$. An important non-trivial question arose whether the map $t$ is bijective (note that this holds in the case when $X^{n}$ is a topological $n$-manifold). It is the purpose of this paper to prove that the answer to this question is affirmative.
For a graph $\Gamma$, let $K(H_{\Gamma },\,1)$ denote the Eilenberg–Mac Lane space associated with the right-angled Artin (RAA) group $H_{\Gamma }$ defined by $\Gamma$. We use the relationship between the combinatorics of $\Gamma$ and the topological complexity of $K(H_{\Gamma },\,1)$ to explain, and generalize to the higher TC realm, Dranishnikov's observation that the topological complexity of a covering space can be larger than that of the base space. In the process, for any positive integer $n$, we construct a graph $\mathcal {O}_n$ whose TC-generating function has polynomial numerator of degree $n$. Additionally, motivated by the fact that $K(H_{\Gamma },\,1)$ can be realized as a polyhedral product, we study the LS category and topological complexity of more general polyhedral product spaces. In particular, we use the concept of a strong axial map in order to give an estimate, sharp in a number of cases, of the topological complexity of a polyhedral product whose factors are real projective spaces. Our estimate exhibits a mixed cat-TC phenomenon not present in the case of RAA groups.
We show that well-known invariants like Lusternik–Schnirelmann category and topological complexity are particular cases of a more general notion, that we call homotopic distance between two maps. As a consequence, several properties of those invariants can be proved in a unified way and new results arise.
We use some detailed knowledge of the cohomology ring of real Grassmann manifolds Gk(ℝn) to compute zero-divisor cup-length and estimate topological complexity of motion planning for k-linear subspaces in ℝn. In addition, we obtain results about monotonicity of Lusternik–Schnirelmann category and topological complexity of Gk(ℝn) as a function of n.