To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We characterize the generalized Auslander–Reiten duality on the category of finitely presented modules over some certain Hom-finite category. Examples include the category FI of finite sets with injections, and the one VI of finite-dimensional vector spaces with linear injections over a finite field.
Let $Q$ be an acyclic quiver and $w \geqslant 1$ be an integer. Let $\mathsf {C}_{-w}({\mathbf {k}} Q)$ be the $(-w)$-cluster category of ${\mathbf {k}} Q$. We show that there is a bijection between simple-minded collections in $\mathsf {D}^b({\mathbf {k}} Q)$ lying in a fundamental domain of $\mathsf {C}_{-w}({\mathbf {k}} Q)$ and $w$-simple-minded systems in $\mathsf {C}_{-w}({\mathbf {k}} Q)$. This generalises the same result of Iyama–Jin in the case that $Q$ is Dynkin. A key step in our proof is the observation that the heart $\mathsf {H}$ of a bounded t-structure in a Hom-finite, Krull–Schmidt, ${\mathbf {k}}$-linear saturated triangulated category $\mathsf {D}$ is functorially finite in $\mathsf {D}$ if and only if $\mathsf {H}$ has enough injectives and enough projectives. We then establish a bijection between $w$-simple-minded systems in $\mathsf {C}_{-w}({\mathbf {k}} Q)$ and positive $w$-noncrossing partitions of the corresponding Weyl group $W_Q$.
Using the theory of ${\mathbf {FS}} {^\mathrm {op}}$ modules, we study the asymptotic behavior of the homology of ${\overline {\mathcal {M}}_{g,n}}$, the Deligne–Mumford compactification of the moduli space of curves, for $n\gg 0$. An ${\mathbf {FS}} {^\mathrm {op}}$ module is a contravariant functor from the category of finite sets and surjections to vector spaces. Via copies that glue on marked projective lines, we give the homology of ${\overline {\mathcal {M}}_{g,n}}$ the structure of an ${\mathbf {FS}} {^\mathrm {op}}$ module and bound its degree of generation. As a consequence, we prove that the generating function $\sum _{n} \dim (H_i({\overline {\mathcal {M}}_{g,n}})) t^n$ is rational, and its denominator has roots in the set $\{1, 1/2, \ldots, 1/p(g,i)\},$ where $p(g,i)$ is a polynomial of order $O(g^2 i^2)$. We also obtain restrictions on the decomposition of the homology of ${\overline {\mathcal {M}}_{g,n}}$ into irreducible $\mathbf {S}_n$ representations.
Let $\mathscr{C}$ be a $(d+2)$-angulated category with d-suspension functor $\Sigma^d$. Our main results show that every Serre functor on $\mathscr{C}$ is a $(d+2)$-angulated functor. We also show that $\mathscr{C}$ has a Serre functor $\mathbb{S}$ if and only if $\mathscr{C}$ has Auslander–Reiten $(d+2)$-angles. Moreover, $\tau_d=\mathbb{S}\Sigma^{-d}$ where $\tau_d$ is d-Auslander–Reiten translation. These results generalize work by Bondal–Kapranov and Reiten–Van den Bergh. As an application, we prove that for a strongly functorially finite subcategory $\mathscr{X}$ of $\mathscr{C}$, the quotient category $\mathscr{C}/\mathscr{X}$ is a $(d+2)$-angulated category if and only if $(\mathscr{C},\mathscr{C})$ is an $\mathscr{X}$-mutation pair, and if and only if $\tau_d\mathscr{X} =\mathscr{X}$.
We compare crystal combinatorics of the level $2$ Fock space with the classification of unitary irreducible representations of type B rational Cherednik algebras to study how unitarity behaves under parabolic restriction. We show that the crystal operators that remove boxes preserve the combinatorial conditions for unitarity, and that the parabolic restriction functors categorifying the crystals send irreducible unitary representations to unitary representations. Furthermore, we find the supports of the unitary representations.
In this paper, we give characterizations of the category of finitely generated projective modules having a right rejective chain. By focusing on the characterizations, we give sufficient conditions for right rejective chains to be total right rejective chains. Moreover, we prove that Nakayama algebras with heredity ideals, locally hereditary algebras and algebras of global dimension at most two satisfy the sufficient conditions. As an application, we show that these algebras are right-strongly quasi-hereditary algebras.
We study the behaviour of representation varieties of quivers with relations under the operation of node splitting. We show how splitting a node gives a correspondence between certain closed subvarieties of representation varieties for different algebras, which preserves properties like normality or having rational singularities. Furthermore, we describe how the defining equations of such closed subvarieties change under the correspondence.
By working in the ‘relative setting’ (splitting one node at a time), we demonstrate that there are many nonhereditary algebras whose irreducible components of representation varieties are all normal with rational singularities. We also obtain explicit generators of the prime defining ideals of these irreducible components. This class contains all radical square zero algebras, but also many others, as illustrated by examples throughout the paper. We also show that this is true when irreducible components are replaced by orbit closures, for a more restrictive class of algebras. Lastly, we provide applications to decompositions of moduli spaces of semistable representations of certain algebras.
We discuss the finiteness of (two-term) silting objects. First, we investigate new triangulated categories without silting object. Second, we study two classes of $\tau$-tilting-finite algebras and give the numbers of their two-term silting objects. Finally, we explore when $\tau$-tilting-finiteness implies representation-finiteness and obtain several classes of algebras in which a $\tau$-tilting-finite algebra is representation-finite.
For a finite dimensional algebra A, the bounded homotopy category of projective A-modules and the bounded derived category of A-modules are dual to each other via certain categories of locally-finite cohomological functors. We prove that the duality gives rise to a 2-categorical duality between certain strict 2-categories involving bounded homotopy categories and bounded derived categories, respectively. We apply the 2-categorical duality to the study of triangle autoequivalence groups.
We show that the perfect derived categories of Iyama’s d-dimensional Auslander algebras of type ${\mathbb {A}}$ are equivalent to the partially wrapped Fukaya categories of the d-fold symmetric product of the $2$-dimensional unit disk with finitely many stops on its boundary. Furthermore, we observe that Koszul duality provides an equivalence between the partially wrapped Fukaya categories associated to the d-fold symmetric product of the disk and those of its $(n-d)$-fold symmetric product; this observation leads to a symplectic proof of a theorem of Beckert concerning the derived Morita equivalence between the corresponding higher Auslander algebras of type ${\mathbb {A}}$. As a by-product of our results, we deduce that the partially wrapped Fukaya categories associated to the d-fold symmetric product of the disk organise into a paracyclic object equivalent to the d-dimensional Waldhausen $\text {S}_{\bullet }$-construction, a simplicial space whose geometric realisation provides the d-fold delooping of the connective algebraic K-theory space of the ring of coefficients.
We introduce and study the notion of Gorenstein silting complexes, which is a generalization of Gorenstein tilting modules in Gorenstein-derived categories. We give the equivalent characterization of Gorenstein silting complexes. We give a sufficient condition for a partial Gorenstein silting complex to have a complement.
We exhibit a large class of quiver moduli spaces, which are Fano varieties, by studying line bundles on quiver moduli and their global sections in general, and work out several classes of examples, comprising moduli spaces of point configurations, Kronecker moduli, and toric quiver moduli.
We study certain special tilting and cotilting modules for an algebra with positive dominant dimension, each of which is generated or cogenerated (and usually both) by projective-injectives. These modules have various interesting properties, for example, that their endomorphism algebras always have global dimension less than or equal to that of the original algebra. We characterise minimal d-Auslander–Gorenstein algebras and d-Auslander algebras via the property that these special tilting and cotilting modules coincide. By the Morita–Tachikawa correspondence, any algebra of dominant dimension at least 2 may be expressed (essentially uniquely) as the endomorphism algebra of a generator-cogenerator for another algebra, and we also study our special tilting and cotilting modules from this point of view, via the theory of recollements and intermediate extension functors.
In this article we study higher preprojective algebras, showing that various known results for ordinary preprojective algebras generalize to the higher setting. We first show that the quiver of the higher preprojective algebra is obtained by adding arrows to the quiver of the original algebra, and these arrows can be read off from the last term of the bimodule resolution of the original algebra. In the Koszul case, we are able to obtain the new relations of the higher preprojective algebra by differentiating a superpotential and we show that when our original algebra is $d$-hereditary, all the relations come from the superpotential. We then construct projective resolutions of all simple modules for the higher preprojective algebra of a $d$-hereditary algebra. This allows us to recover various known homological properties of the higher preprojective algebras and to obtain a large class of almost Koszul dual pairs of algebras. We also show that when our original algebra is Koszul there is a natural map from the quadratic dual of the higher preprojective algebra to a graded trivial extension algebra.
We construct a family of compactifications of the affine cone of the Grassmannian variety of $2$-planes. We show that both the tropical variety of the Plücker ideal and familiar valuations associated to the construction of Newton–Okounkov bodies for the Grassmannian variety can be recovered from these compactifications. In this way, we unite various perspectives for constructing toric degenerations of flag varieties.
We extend the classical notion of standardly stratified k-algebra (stated for finite dimensional k-algebras) to the more general class of rings, possibly without 1, with enough idempotents. We show that many of the fundamental results, which are known for classical standardly stratified algebras, can be generalized to this context. Furthermore, new classes of rings appear as: ideally standardly stratified and ideally quasi-hereditary. In the classical theory, it is known that quasi-hereditary and ideally quasi-hereditary algebras are equivalent notions, but in our general setting, this is no longer true. To develop the theory, we use the well-known connection between rings with enough idempotents and skeletally small categories (ringoids or rings with several objects).
A module M is called a D4-module if, whenever A and B are submodules of M with M = A ⊕ B and f : A → B is a homomorphism with Imf a direct summand of B, then Kerf is a direct summand of A. The class of D4-modules contains the class of D3-modules, and hence the class of semi-projective modules, and so the class of Rickart modules. In this paper we prove that, over a commutative Dedekind domain R, for an R-module M which is a direct sum of cyclic submodules, M is direct projective (equivalently, it is semi-projective) iff M is D3 iff M is D4. Also we prove that, over a prime PI-ring, for a divisible R-module X, X is direct projective (equivalently, it is Rickart) iff X ⊕ X is D4. We determine some D3-modules and D4-modules over a discrete valuation ring, as well. We give some relevant examples. We also provide several examples on D3-modules and D4-modules via quivers.
We study the moduli space of rank 2 instanton sheaves on ℙ3 in terms of representations of a quiver consisting of three vertices and four arrows between two pairs of vertices. Aiming at an alternative compactification for the moduli space of instanton sheaves, we show that for each rank 2 instanton sheaf, there is a stability parameter θ for which the corresponding quiver representation is θ-stable (in the sense of King), and that the space of stability parameters has a non-trivial wall-and-chamber decomposition. Looking more closely at instantons of low charge, we prove that there are stability parameters with respect to which every representation corresponding to a rank 2 instanton sheaf of charge 2 is stable and provide a complete description of the wall-and-chamber decomposition for representation corresponding to a rank 2 instanton sheaf of charge 1.
We consider maximal non-l-intertwining collections, which are a higher-dimensional version of the maximal non-crossing collections which give clusters of Plücker coordinates in the Grassmannian coordinate ring, as described by Scott. We extend a method of Scott for producing such collections, which are related to tensor products of higher Auslander algebras of type A. We show that a higher preprojective algebra of the tensor product of two d-representation-finite algebras has a d-precluster-tilting subcategory. Finally, we relate mutations of these collections to a form of tilting for these algebras.