To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, we study short exact sequences of finitary 2-representations of a weakly fiat 2-category. We provide a correspondence between such short exact sequences with fixed middle term and coidempotent subcoalgebras of a coalgebra 1-morphism defining this middle term. We additionally relate these to recollements of the underlying abelian 2-representations.
Cluster categories and cluster algebras encode two dimensional structures. For instance, the Auslander–Reiten quiver of a cluster category can be drawn on a surface, and there is a class of cluster algebras determined by surfaces with marked points.
Cluster characters are maps from cluster categories (and more general triangulated categories) to cluster algebras. They have a tropical shadow in the form of so-called tropical friezes, which are maps from cluster categories (and more general triangulated categories) to the integers.
This paper will define higher dimensional tropical friezes. One of the motivations is the higher dimensional cluster categories of Oppermann and Thomas, which encode (d + 1)-dimensional structures for an integer d ⩾ 1. They are (d + 2)-angulated categories, which belong to the subject of higher homological algebra.
We will define higher dimensional tropical friezes as maps from higher cluster categories (and more general (d + 2)-angulated categories) to the integers. Following Palu, we will define a notion of (d + 2)-angulated index, establish some of its properties, and use it to construct higher dimensional tropical friezes.
A duality theorem for the singularity category of a finite dimensional Gorenstein algebra is proved. It complements a duality on the category of perfect complexes, discovered by Happel. One of its consequences is an analogue of Serre duality, and the existence of Auslander–Reiten triangles for the $\mathfrak{p}$-local and $\mathfrak{p}$-torsion subcategories of the derived category, for each homogeneous prime ideal $\mathfrak{p}$ arising from the action of a commutative ring via Hochschild cohomology.
We define a notion of mixed Hodge structure with modulus that generalizes the classical notion of mixed Hodge structure introduced by Deligne and the level one Hodge structures with additive parts introduced by Kato and Russell in their description of Albanese varieties with modulus. With modulus triples of any dimension, we attach mixed Hodge structures with modulus. We combine this construction with an equivalence between the category of level one mixed Hodge structures with modulus and the category of Laumon 1-motives to generalize Kato–Russell’s Albanese varieties with modulus to 1-motives.
We prove a closed formula counting semistable twisted (or meromorphic) Higgs bundles of fixed rank and degree over a smooth projective curve of genus $g$ defined over a finite field, when the twisting line bundle degree is at least $2g-2$ (this includes the case of usual Higgs bundles). This yields a closed expression for the Donaldson–Thomas invariants of the moduli spaces of twisted Higgs bundles. We similarly deal with twisted quiver sheaves of type $A$ (finite or affine), obtaining in particular a Harder–Narasimhan-type formula counting semistable $U(p,q)$-Higgs bundles over a smooth projective curve defined over a finite field.
A ring $\unicode[STIX]{x1D6EC}$ is called right Köthe if every right $\unicode[STIX]{x1D6EC}$-module is a direct sum of cyclic modules. In this paper, we give a characterization of basic hereditary right Köthe rings in terms of their Coxeter valued quivers. We also give a characterization of basic right Köthe rings with radical square zero. Therefore, we give a solution to Köthe’s problem in these two cases.
We give a complete description of a basis of the extension spaces between indecomposable string and quasi-simple band modules in the module category of a gentle algebra.
Let Φ be a finite-dimensional algebra over a field k. Kleiner described the Auslander–Reiten sequences in a precovering extension closed subcategory ${\rm {\cal X}}\subseteq {\rm mod }\,\Phi $. If $X\in \mathcal {X}$ is an indecomposable such that ${\rm Ext}_\Phi ^1 (X,{\rm {\cal X}})\ne 0$ and $\zeta X$ is the unique indecomposable direct summand of the $\mathcal {X}$-cover $g:Y\to D\,{\rm Tr}\,X$ such that ${\rm Ext}_\Phi ^1 (X,\zeta X)\ne 0$, then there is an Auslander–Reiten sequence in $\mathcal {X}$ of the form
Moreover, when ${\rm En}{\rm d}_\Phi (X)$ modulo the morphisms factoring through a projective is a division ring, Kleiner proved that each non-split short exact sequence of the form
is such that η is right almost split in $\mathcal {X}$, and the pushout of δ along g gives an Auslander–Reiten sequence in ${\rm mod}\,\Phi $ ending at X.
In this paper, we give higher-dimensional generalizations of this. Let $d\geq 1$ be an integer. A d-cluster tilting subcategory ${\rm {\cal F}}\subseteq {\rm mod}\,\Phi $ plays the role of a higher ${\rm mod}\,\Phi $. Such an $\mathcal {F}$ is a d-abelian category, where kernels and cokernels are replaced by complexes of d objects and short exact sequences by complexes of d + 2 objects. We give higher versions of the above results for an additive ‘d-extension closed’ subcategory $\mathcal {X}$ of $\mathcal {F}$.
A new homological dimension, called rigidity dimension, is introduced to measure the quality of resolutions of finite dimensional algebras (especially of infinite global dimension) by algebras of finite global dimension and big dominant dimension. Upper bounds of the dimension are established in terms of extensions and of Hochschild cohomology, and finiteness in general is derived from homological conjectures. In particular, the rigidity dimension of a non-semisimple group algebra is finite and bounded by the order of the group. Then invariance under stable equivalences is shown to hold, with some exceptions when there are nodes in case of additive equivalences, and without exceptions in case of triangulated equivalences. Stable equivalences of Morita type and derived equivalences, both between self-injective algebras, are shown to preserve rigidity dimension as well.
Balanced pairs appear naturally in the realm of relative homological algebra associated with the balance of right-derived functors of the Hom functor. Cotorsion triplets are a natural source of such pairs. In this paper, we study the connection between balanced pairs and cotorsion triplets by using recent quiver representation techniques. In doing so, we find a new characterization of abelian categories that have enough projectives and injectives in terms of the existence of complete hereditary cotorsion triplets. We also provide a short proof of the lack of balance for derived functors of Hom computed using flat resolutions, which extends the one given by Enochs in the commutative case.
For $A$ a gentle algebra, and $X$ and $Y$ string modules, we construct a combinatorial basis for $\operatorname{Hom}(X,\unicode[STIX]{x1D70F}Y)$. We use this to describe support $\unicode[STIX]{x1D70F}$-tilting modules for $A$. We give a combinatorial realization of maps in both directions realizing the bijection between support $\unicode[STIX]{x1D70F}$-tilting modules and functorially finite torsion classes. We give an explicit basis of $\operatorname{Ext}^{1}(Y,X)$ as short exact sequences. We analyze several constructions given in a more restricted, combinatorial setting by McConville, showing that many but not all of them can be extended to general gentle algebras.
Let $A=\bigoplus _{i\in \mathbb{Z}}A_{i}$ be a finite-dimensional graded symmetric cellular algebra with a homogeneous symmetrizing trace of degree $d$. We prove that if $d\neq 0$ then $A_{-d}$ contains the Higman ideal $H(A)$ and $\dim H(A)\leq \dim A_{0}$, and provide a semisimplicity criterion for $A$ in terms of the centralizer of $A_{0}$.
In this article, we study localizations of hearts of cotorsion pairs ($\mathcal{U}, \mathcal{V}$) where $\mathcal{U}$ is rigid on an extriangulated category $\mathcal{B}$. The hearts of such cotorsion pairs are equivalent to the functor categories over the stable category of $\mathcal{U}$ ($\bmod \underline{\mathcal{U}}$). Inspired by Marsh and Palu (Nagoya Math. J.225(2017), 64–99), we consider the mutation (in the sense of Iyama and Yoshino, Invent. Math.172(1) (2008), 117–168) of $\mathcal{U}$ that induces a cotorsion pair ($\mathcal{U}^{\prime}, \mathcal{V}^{\prime}$). Generally speaking, the hearts of ($\mathcal{U}, \mathcal{V}$) and ($\mathcal{U}^{\prime}, \mathcal{V}^{\prime}$) are not equivalent to each other, but we will give a generalized pseudo-Morita equivalence between certain localizations of their hearts.
The category of Cohen–Macaulay modules of an algebra $B_{k,n}$ is used in Jensen et al. (A categorification of Grassmannian cluster algebras, Proc. Lond. Math. Soc. (3) 113(2) (2016), 185–212) to give an additive categorification of the cluster algebra structure on the homogeneous coordinate ring of the Grassmannian of $k$-planes in $n$-space. In this paper, we find canonical Auslander–Reiten sequences and study the Auslander–Reiten translation periodicity for this category. Furthermore, we give an explicit construction of Cohen–Macaulay modules of arbitrary rank. We then use our results to establish a correspondence between rigid indecomposable modules of rank 2 and real roots of degree 2 for the associated Kac–Moody algebra in the tame cases.
In order to better unify the tilting theory and the Auslander–Reiten theory, Xi introduced a general transpose called the relative transpose. Originating from this, we introduce and study the cotranspose of modules with respect to a left A-module T called n-T-cotorsion-free modules. Also, we give many properties and characteristics of n-T-cotorsion-free modules under the help of semi-Wakamatsu-tilting modules AT.
We provide a complete classification of all algebras of generalized dihedral type, which are natural generalizations of algebras which occurred in the study of blocks of group algebras with dihedral defect groups. This gives a description by quivers and relations coming from surface triangulations.
The purpose of this paper is to understand lattices of certain subcategories in module categories of representation-finite gentle algebras called tiling algebras, as introduced by Coelho Simões and Parsons. We present combinatorial models for torsion pairs and wide subcategories in the module category of tiling algebras. Our models use the oriented flip graphs and noncrossing tree partitions, previously introduced by the authors, and a description of the extension spaces between indecomposable modules over tiling algebras. In addition, we classify two-term simple-minded collections in bounded derived categories of tiling algebras. As a consequence, we obtain a characterization of c-matrices for any quiver mutation-equivalent to a type A Dynkin quiver.
A duality theorem for the stable module category of representations of a finite group scheme is proved. One of its consequences is an analogue of Serre duality, and the existence of Auslander–Reiten triangles for the $\mathfrak{p}$-local and $\mathfrak{p}$-torsion subcategories of the stable category, for each homogeneous prime ideal $\mathfrak{p}$ in the cohomology ring of the group scheme.
Approximation sequences and derived equivalences occur frequently in the research of mutation of tilting objects in representation theory, algebraic geometry and noncommutative geometry. In this paper, we introduce symmetric approximation sequences in additive categories and weakly n-angulated categories which include (higher) Auslander-Reiten sequences (triangles) and mutation sequences in algebra and geometry, and show that such sequences always give rise to derived equivalences between the quotient rings of endomorphism rings of objects in the sequences modulo some ghost and coghost ideals.