To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a variety of algebras with two binary commutative and associative operations. For each integer n ≥ 0, we represent the partitions on an n-element set as n-ary terms in the variety. We determine necessary and sufficient conditions on the variety ensuring that, for each n, these representing terms be all the essentially n-ary terms and moreover that distinct partitions yield distinct terms.
For a two-dimensional random walk {X (n) = (X(n)1, X(n)2)T, n ∈ ℕ0} with correlated components the first-crossing-time probability problem through unit-slope straight lines x2 = x1 - r(r = 0,1) is analysed. The p.g.f.'s for the first-crossing-time probabilities are expressed as solutions of a fourth-degree algebraic equation and are then exploited to obtain the first-crossing-time probabilities. Several additional results, including the mean first-crossing time and the probability of ultimate crossing, are also given.
By studying the minimum of moving maxima, that is the maxima taken over a sliding window of length k in an i.i.d. sequence, we obtain new results on the reliability of consecutive k-out-of-n systems. In particular, we give the reliability asymptotically with both k and n varying. The underlying method of our approach is to analyze the singularities of a generating function.
A slightly strengthened version of the union-closed sets conjecture is proposed. It is shown that this version holds for a minimum set size of one or two and an examination of a boundary function shows that it holds for collections containing up to 19 sets. Some related conjectures are outlined.
Let g1, g2, …, gn be a sequence of mutually independent, normally distributed, random variables with mathematical expectation zero and variance unity. In this work, we obtain the average number of real zeros of the random algebraic equations Σnk=1 Kσ gk(ω)tk = C, where C is a constant independent of t and not necessarily zero. This average is (1/π) log n, when n is large and σ is non-negative.
The quintuple product identity has appeared many times in the literature. Indeed, no fewer than 12 proofs have been given. We establish a more general identity from which the quintuple product identity follows in two ways.
We consider certain affine Kac-Moody Lie algebras. We give a Lie theoretic interpretation of the generalized Euler identities by showing that they are associated with certain filtrations of the basic representations of these algebras. In the case when the algebras have prime rank, we also give algebraic proofs of the corresponding identities.
Let X1, X2, …, Xn be identically distributed independent random variables belonging to the domain of attraction of the normal law, have zero means and Pr{Xr ≠ 0} > 0. Suppose a0, a1, …, an are non-zero real numbers and max and εn is such that as n → ∞, εn. If Nn be the number of real roots of the equation then for n > n0, Nn > εn log n outside an exceptional set of measure at most provided limn→∞ (kn/tn) is finite.
Let ℱ be a set of m subsets of X = {1,2,…, n}. We study the maximum number λ of containments Y ⊂ Z with Y, Z ∊ ℱ. Theorem 9. , if, and only if, ml/n → 1. When n is large and members of ℱ have cardinality k or k–1 we determine λ. For this we bound (ΔN)/N where ΔN is the shadow of Kruskal's k-cascade for the integer N. Roughly, if m ∼ N + ΔN, then λ ∼ kN with infinitely many cases of equality. A by-product is Theorem 7 of LYM posets.
Some generalizations of Sperner's theorem and of the LYM inequality are given to the case when A1,… At are t families of subsets of {1,…,m} such that a set in one family does not properly contain a set in another.
Let 〈fn≧0 be nonnegative real numbers with generating function f(x) = Σfnxn. Assume f(x) has the following properties: it has a finite nonzero radius of convergence x0 with its only singularity on the circle of convergence at x = x0 and f(x0) converges to y0; y = f(x) satisfies an analytic identity F(x, y) = 0 near (x0, y0); Fy(l) (x0, y0)= 0, 0 ≦ i < k and Fy(k) (x0, y0) ≠ 0. There are constants γ, a positive rational, and c such that fn~cx0−n n−(1 +ggr;). Furthermore, we show (i) in all cases how to determine γ and c from f(x) and (ii) in certain cases how to determine them from F(x, y).
A permutation π of the set {1, 2, …, n} is four-discordant if π(i) ≢ i, i+ 1, i + 2, i +3 (mod n) for 1 ≦i ≦ n. Generating functions for rook polynomials associated with four-discordant permutations are derived. Hit polynomials associated with four-discordant permutations are studied. Finally, it is shown that the leading coefficients of these rook polynomials form a “tribonacci” sequence which is a generalized Fibonacci sequence.
Let P be a finite, connected partially ordered set containing no crowns and let Q be a subset of P. Then the following conditions are equivalent: (1) Q is a retract of P; (2) Q is the set of fixed points of an order-preserving mapping of P to P; (3) Q is obtained from P by dismantling by irreducibles.
An asymptotic expansion is obtained for this sequence, of interest in combinatorial analysis. Values are given for the constants appearing in the leading term and a numerical comparison made.
The letters a, b, n, m, t (perhaps with suffixes) always denote natural numbers. A, B, S denote finite sets of natural numbers. |A| stands for the cardinality of A.
For a given constant c > 1 we say that the set A has property α(c) if there are at most c|A| differences a − b ≥ 0 for a, b ∈ A.
A. J. W. Hilton [5] conjectured that if P, Q are collections of subsets of a finite set S, with |S| = n, and |P| > 2n−2, |Q| ≥ 2n−2, then for some A ∈ P, B ∈ Q we have A ⊆ B or B ⊆ A. We here show that this assertion, indeed a stronger one, can be deduced from a result of D. J. Kleitman. We then give another proof of a recent result also proved by Lovász and by Schönheim.