We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Athanasiadis [‘A survey of subdivisions and local $h$-vectors’, in The Mathematical Legacy of Richard P. Stanley (American Mathematical Society, Providence, RI, 2017), 39–51] asked whether the local $h$-polynomials of type $A$ cluster subdivisions have only real zeros. We confirm this conjecture and prove that the local $h$-polynomials for all the Cartan–Killing types have only real roots. Our proofs use multiplier sequences and Chebyshev polynomials of the second kind.
Recently, Sun posed a series of conjectures on the log-concavity of the sequence , where is a familiar combinatorial sequence of positive integers. Luca and Stănică, Hou et al. and Chen et al. proved some of Sun's conjectures. In this paper, we present a criterion on the log-concavity of the sequence . The criterion is based on the existence of a function f(n) that satisfies some inequalities involving terms related to the sequence . Furthermore, we present a heuristic approach to compute f(n). As applications, we prove that, for the Zagier numbers , the sequences are strictly log-concave, which confirms a conjecture of Sun. We also prove the log-concavity of the sequence of Cohen–Rhin numbers.
We study the numbers of involutions and their relation to Frobenius–Schur indicators in the groups $\text{SO}^{\pm }(n,q)$ and $\unicode[STIX]{x1D6FA}^{\pm }(n,q)$. Our point of view for this study comes from two motivations. The first is the conjecture that a finite simple group $G$ is strongly real (all elements are conjugate to their inverses by an involution) if and only if it is totally orthogonal (all Frobenius–Schur indicators are 1), and we observe this holds for all finite simple groups $G$ other than the groups $\unicode[STIX]{x1D6FA}^{\pm }(4m,q)$ with $q$ even. We prove computationally that for small $m$ this statement indeed holds for these groups by equating their character degree sums with the number of involutions. We also prove a result on a certain twisted indicator for the groups $\text{SO}^{\pm }(4m+2,q)$ with $q$ odd. Our second motivation is to continue the work of Fulman, Guralnick, and Stanton on generating functions and asymptotics for involutions in classical groups. We extend their work by finding generating functions for the numbers of involutions in $\text{SO}^{\pm }(n,q)$ and $\unicode[STIX]{x1D6FA}^{\pm }(n,q)$ for all $q$, and we use these to compute the asymptotic behavior for the number of involutions in these groups when $q$ is fixed and $n$ grows.
The goal of property testing is to quickly distinguish between objects which satisfy a property and objects that are ε-far from satisfying the property. There are now several general results in this area which show that natural properties of combinatorial objects can be tested with ‘constant’ query complexity, depending only on ε and the property, and not on the size of the object being tested. The upper bound on the query complexity coming from the proof techniques is often enormous and impractical. It remains a major open problem if better bounds hold.
Maybe surprisingly, for testing with respect to the rectangular distance, we prove there is a universal (not depending on the property), polynomial in 1/ε query complexity bound for two-sided testing hereditary properties of sufficiently large permutations. We further give a nearly linear bound with respect to a closely related metric which also depends on the smallest forbidden subpermutation for the property. Finally, we show that several different permutation metrics of interest are related to the rectangular distance, yielding similar results for testing with respect to these metrics.
We develop a general procedure that finds recursions for statistics counting isomorphic copies of a graph G0 in the common random graph models ${\cal G}$(n,m) and ${\cal G}$(n,p). Our results apply when the average degrees of the random graphs are below the threshold at which each edge is included in a copy of G0. This extends an argument given earlier by the second author for G0=K3 with a more restricted range of average degree. For all strictly balanced subgraphs G0, our results give much information on the distribution of the number of copies of G0 that are not in large ‘clusters’ of copies. The probability that a random graph in ${\cal G}$(n,p) has no copies of G0 is shown to be given asymptotically by the exponential of a power series in n and p, over a fairly wide range of p. A corresponding result is also given for ${\cal G}$(n,m), which gives an asymptotic formula for the number of graphs with n vertices, m edges and no copies of G0, for the applicable range of m. An example is given, computing the asymptotic probability that a random graph has no triangles for p=o(n−7/11) in ${\cal G}$(n,p) and for m=o(n15/11) in ${\cal G}$(n,m), extending results of the second author.
We investigate the structure of the twisted Brauer monoid , comparing and contrasting it with the structure of the (untwisted) Brauer monoid . We characterize Green's relations and pre-orders on , describe the lattice of ideals and give necessary and sufficient conditions for an ideal to be idempotent generated. We obtain formulae for the rank (smallest size of a generating set) and (where applicable) the idempotent rank (smallest size of an idempotent generating set) of each principal ideal; in particular, when an ideal is idempotent generated, its rank and idempotent rank are equal. As an application of our results, we describe the idempotent generated subsemigroup of (which is not an ideal), as well as the singular ideal of (which is neither principal nor idempotent generated), and we deduce that the singular part of the Brauer monoid is idempotent generated, a result previously proved by Maltcev and Mazorchuk.
We construct minor-closed addable families of graphs that are subcritical and contain all planar graphs. This contradicts (one direction of) a well-known conjecture of Noy.
We study the size and the external path length of random tries and show that they are asymptotically independent in the asymmetric case but strongly dependent with small periodic fluctuations in the symmetric case. Such an unexpected behavior is in sharp contrast to the previously known results on random tries, that the size is totally positively correlated to the internal path length and that both tend to the same normal limit law. These two dependence examples provide concrete instances of bivariate normal distributions (as limit laws) whose components have correlation either zero or one or periodically oscillating. Moreover, the same type of behavior is also clarified for other classes of digital trees such as bucket digital trees and Patricia tries.
We provide lower bounds for $p$-adic valuations of multisums of factorial ratios which satisfy an Apéry-like recurrence relation: these include Apéry, Domb and Franel numbers, the numbers of abelian squares over a finite alphabet, and constant terms of powers of certain Laurent polynomials. In particular, we prove Beukers’ conjectures on the $p$-adic valuation of Apéry numbers. Furthermore, we give an effective criterion for a sequence of factorial ratios to satisfy the $p$-Lucas property for almost all primes $p$.
A random binary search tree grown from the uniformly random permutation of [n] is studied. We analyze the exact and asymptotic counts of vertices by rank, the distance from the set of leaves. The asymptotic fraction ck of vertices of a fixed rank k ≥ 0 is shown to decay exponentially with k. We prove that the ranks of the uniformly random, fixed size sample of vertices are asymptotically independent, each having the distribution {ck}. Notoriously hard to compute, the exact fractions ck have been determined for k ≤ 3 only. We present a shortcut enabling us to compute c4 and c5 as well; both are ratios of enormous integers, the denominator of c5 being 274 digits long. Prompted by the data, we prove that, in sharp contrast, the largest prime divisor of the denominator of ck is at most 2k+1 + 1. We conjecture that, in fact, the prime divisors of every denominator for k > 1 form a single interval, from 2 to the largest prime not exceeding 2k+1 + 1.
Let [An,k]n,k⩾0 be an infinite lower triangular array satisfying the recurrence
for n ⩾ 1 and k ⩾ 0, where A0,0 = 1, A0,k = Ak,–1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property.
The $l_{0}$-minimisation problem has attracted much attention in recent years with the development of compressive sensing. The spark of a matrix is an important measure that can determine whether a given sparse vector is the solution of an $l_{0}$-minimisation problem. However, its calculation involves a combinatorial search over all possible subsets of columns of the matrix, which is an NP-hard problem. We use Weyl’s theorem to give two new lower bounds for the spark of a matrix. One is based on the mutual coherence and the other on the coherence function. Numerical examples are given to show that the new bounds can be significantly better than existing ones.
We identify the asymptotic probability of a configuration model CMn(d) producing a connected graph within its critical window for connectivity that is identified by the number of vertices of degree 1 and 2, as well as the expected degree. In this window, the probability that the graph is connected converges to a non-trivial value, and the size of the complement of the giant component weakly converges to a finite random variable. Under a finite second moment condition we also derive the asymptotics of the connectivity probability conditioned on simplicity, from which follows the asymptotic number of simple connected graphs with a prescribed degree sequence.
A class of games for finding a leader among a group of candidates is studied in detail. This class covers games based on coin tossing and rock-paper-scissors as special cases and its complexity exhibits similar stochastic behaviors: either of logarithmic mean and bounded variance or of exponential mean and exponential variance. Many applications are also discussed.
Let $c\unicode[STIX]{x1D719}_{k}(n)$ denote the number of $k$-colored generalized Frobenius partitions of $n$. Recently, new Ramanujan-type congruences associated with $c\unicode[STIX]{x1D719}_{4}(n)$ were discovered. In this article, we discuss two approaches in proving such congruences using the theory of modular forms. Our methods allow us to prove congruences such as $c\unicode[STIX]{x1D719}_{4}(14n+6)\equiv 0\;\text{mod}\;7$ and Seller’s congruence $c\unicode[STIX]{x1D719}_{4}(10n+6)\equiv 0\;\text{mod}\;5$.
Let $B_{k,\ell }(n)$ denote the number of $(k,\ell )$-regular bipartitions of $n$. Employing both the theory of modular forms and some elementary methods, we systematically study the arithmetic properties of $B_{3,\ell }(n)$ and $B_{5,\ell }(n)$. In particular, we confirm all the conjectures proposed by Dou [‘Congruences for (3,11)-regular bipartitions modulo 11’, Ramanujan J.40, 535–540].
The aim of this paper is to develop analytic techniques to deal with the monotonicity of certain combinatorial sequences. On the one hand, a criterion for the monotonicity of the function is given, which is a continuous analogue of a result of Wang and Zhu. On the other hand, the log-behaviour of the functions
is considered, where ζ(x) and Γ(x) are the Riemann zeta function and the Euler Gamma function, respectively. Consequently, the strict log-concavities of the function θ(x) (a conjecture of Chen et al.) and for some combinatorial sequences (including the Bernoulli numbers, the tangent numbers, the Catalan numbers, the Fuss–Catalan numbers, and the binomial coefficients are demonstrated. In particular, this contains some results of Chen et al., and Luca and Stănică. Finally, by researching the logarithmically complete monotonicity of some functions, the infinite log-monotonicity of the sequence
is proved. This generalizes two results of Chen et al. that both the Catalan numbers and the central binomial coefficients are infinitely log-monotonic, and strengthens one result of Su and Wang that is log-convex in n for positive integers d > δ. In addition, the asymptotically infinite log-monotonicity of derangement numbers is showed. In order to research the stronger properties of the above functions θ(x) and F(x), the logarithmically complete monotonicity of functions
is also obtained, which generalizes the results of Lee and Tepedelenlioǧlu, and Qi and Li.
In this paper, we study the integer sequence $(E_{n})_{n\geq 1}$, where $E_{n}$ counts the number of possible dimensions for centralisers of $n\times n$ matrices. We give an example to show another combinatorial interpretation of $E_{n}$ and present an implicit recurrence formula for $E_{n}$, which may provide a fast algorithm for computing $E_{n}$. Based on the recurrence, we obtain the asymptotic formula $E_{n}=\frac{1}{2}n^{2}-\frac{2}{3}\sqrt{2}n^{3/2}+O(n^{5/4})$.
In this paper a determinant identity is established, from which a simple proof of the multivariate Lagrange–Good inversion formula follows directly. Further discussion on a discrete analogue of the Lagrange–Good inversion formula is also presented.
In this paper, we count a dual set of Stirling permutations by the number of alternating runs and study properties of the generating functions, including recurrence relations, grammatical interpretations and convolution formulas.