To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The ‘coupon collection problem’ refers to a class of occupancy problems in which j identical items are distributed, independently and at random, to n cells, with no restrictions on multiple occupancy. Identifying the cells as coupons, a coupon is ‘collected’ if the cell is occupied by one or more of the distributed items; thus, some coupons may never be collected, whereas others may be collected once or twice or more. We call the number of coupons collected exactly r times coupons of type r. The coupon collection model we consider is general, in that a random number of purchases occurs at each stage of collecting a large number of coupons; the sample sizes at each stage are independent and identically distributed according to a sampling distribution. The joint behavior of the various types is an intricate problem. In fact, there is a variety of joint central limit theorems (and other limit laws) that arise according to the interrelation between the mean, variance, and range of the sampling distribution, and of course the phase (how far we are in the collection processes). According to an appropriate combination of the mean of the sampling distribution and the number of available coupons, the phase is sublinear, linear, or superlinear. In the sublinear phase, the normalization that produces a Gaussian limit law for uncollected coupons can be used to obtain a multivariate central limit law for at most two other types — depending on the rates of growth of the mean and variance of the sampling distribution, we may have a joint central limit theorem between types 0 and 1, or between types 0, 1, and 2. In the linear phase we have a multivariate central limit theorem among the types 0, 1,…, k for any fixed k.
An algebra A is said to be finitely related if the clone Clo(A) of its term operations is determined by a finite set of finitary relations. We prove that each finite idempotent semigroup satisfying the identity xyxzx≈xyzx is finitely related.
We investigate the number of symmetric matrices of nonnegative integers with zero diagonal such that each row sum is the same. Equivalently, these are zero-diagonal symmetric contingency tables with uniform margins, or loop-free regular multigraphs. We determine the asymptotic value of this number as the size of the matrix tends to infinity, provided the row sum is large enough. We conjecture that one form of our answer is valid for all row sums. An example appears in Figure 1.
In this paper we present a combinatorial proof of an identity involving the two kinds of Stirling numbers and the numbers of permutations with prescribed numbers of excedances and cycles. Several recurrence relations related to the numbers of excedances, fixed points and cycles are also obtained.
In two recent papers, Albrecht and White [‘Counting paths in a grid’, Austral. Math. Soc. Gaz.35 (2008), 43–48] and Hirschhorn [‘Comment on “Counting paths in a grid”’, Austral. Math. Soc. Gaz.36 (2009), 50–52] considered the problem of counting the total number Pm,n of certain restricted lattice paths in an m×n grid of cells, which appeared in the context of counting train paths through a rail network. Here we give a precise study of the asymptotic behaviour of these numbers for the square grid, extending the results of Hirschhorn, and furthermore provide an asymptotic equivalent of these numbers for a rectangular grid with a constant proportion α=m/n between the side lengths.
In this paper we give an extension of a curious combinatorial identity due to B. Sury. Our proof is very simple and elementary. As an application, we obtain two congruences for Fermat quotients modulo p3. Moreover, we prove an extension of a result by H. Pan that generalizes Carlitz’s congruence.
The Möbius inversion formula for a locally finite partially ordered set is realized as a Lagrange inversion formula. Schauder bases are introduced to interpret Möbius inversion.
We provide certain unusual generalizations of Clausen's and Orr's theorems for solutions of fourth-order and fifth-order generalized hypergeometric equations. As an application, we present several examples of algebraic transformations of Calabi–Yau differential equations.
We consider a generalized form of the coupon collection problem in which a random number, S, of balls is drawn at each stage from an urn initially containing n white balls (coupons). Each white ball drawn is colored red and returned to the urn; red balls drawn are simply returned to the urn. The question considered is then: how many white balls (uncollected coupons) remain in the urn after the kn draws? Our analysis is asymptotic as n → ∞. We concentrate on the case when kn draws are made, where kn / n → ∞ (the superlinear case), although we sketch known results for other ranges of kn. A Gaussian limit is obtained via a martingale representation for the lower superlinear range, and a Poisson limit is derived for the upper boundary of this range via the Chen-Stein approximation.
An interval in a combinatorial structure R is a set I of points that are related to every point in R∖I in the same way. A structure is simple if it has no proper intervals. Every combinatorial structure can be expressed as an inflation of a simple structure by structures of smaller sizes—this is called the substitution (or modular) decomposition. In this paper we prove several results of the following type: an arbitrary structure S of size n belonging to a class 𝒞 can be embedded into a simple structure from 𝒞 by adding at most f(n) elements. We prove such results when 𝒞 is the class of all tournaments, graphs, permutations, posets, digraphs, oriented graphs and general relational structures containing a relation of arity greater than two. The functions f(n) in these cases are 2, ⌈log 2(n+1)⌉, ⌈(n+1)/2⌉, ⌈(n+1)/2⌉, ⌈log 4(n+1)⌉, ⌈log 3(n+1)⌉ and 1, respectively. In each case these bounds are the best possible.
The partition monoid is a salient natural example of a *-regular semigroup. We find a Galois connection between elements of the partition monoid and binary relations, and use it to show that the partition monoid contains copies of the semigroup of transformations and the symmetric and dual-symmetric inverse semigroups on the underlying set. We characterize the divisibility preorders and the natural order on the (straight) partition monoid, using certain graphical structures associated with each element. This gives a simpler characterization of Green’s relations. We also derive a new interpretation of the natural order on the transformation semigroup. The results are also used to describe the ideal lattices of the straight and twisted partition monoids and the Brauer monoid.
In this paper we consider a generalized coupon collection problem in which a customer repeatedly buys a random number of distinct coupons in order to gather a large number n of available coupons. We address the following question: How many different coupons are collected after k = kn draws, as n → ∞? We identify three phases of kn: the sublinear, the linear, and the superlinear. In the growing sublinear phase we see o(n) different coupons, and, with true randomness in the number of purchases, under the appropriate centering and scaling, a Gaussian distribution is obtained across the entire phase. However, if the number of purchases is fixed, a degeneracy arises and normality holds only at the higher end of this phase. If the number of purchases have a fixed range, the small number of different coupons collected in the sublinear phase is upgraded to a number in need of centering and scaling to become normally distributed in the linear phase with a different normal distribution of the type that appears in the usual central limit theorems. The Gaussian results are obtained via martingale theory. We say a few words in passing about the high probability of collecting nearly all the coupons in the superlinear phase. It is our aim to present the results in a way that explores the critical transition at the ‘seam line’ between different Gaussian phases, and between these phases and other nonnormal phases.
In this paper, we present a combinatorial proof for an identity involving the triangular numbers. The proof resembles Franklin’s proof of Euler’s pentagonal number theorem.
The Ehrenfest urn is a model for the diffusion of gases between two chambers. Classic research deals with this system as a Markovian model with a fixed number of balls, and derives the steady-state behavior as a binomial distribution (which can be approximated by a normal distribution). We study the gradual change for an urn containing n (a very large number) balls from the initial condition to the steady state. We look at the status of the urn after kn draws. We identify three phases of kn: the growing sublinear, the linear, and the superlinear. In the growing sublinear phase the amount of gas in each chamber is normally distributed, with parameters that are influenced by the initial conditions. In the linear phase a different normal distribution applies, in which the influence of the initial conditions is attenuated. The steady state is not a good approximation until a certain superlinear amount of time has elapsed. At the superlinear stage the mix is nearly perfect, with a nearly perfect symmetrical normal distribution in which the effect of the initial conditions is completely washed away. We give interpretations for how the results in different phases conjoin at the ‘seam lines’. In fact, these Gaussian phases are all manifestations of one master theorem. The results are obtained via martingale theory.
In this paper, compositions of a natural number are studied. The number of restricted compositions is given in a closed form, and some applications are presented.
We prove that there are permutation classes (hereditary properties of permutations) of every growth rate (Stanley–Wilf limit) at least λ≈2.48187, the unique real root of x5−2x4−2x2−2x−1, thereby establishing a conjecture of Albert and Linton.
The probability that two randomly selected phylogenetic trees of the same size are isomorphic is found to be asymptotic to a decreasing exponential modulated by a polynomial factor. The number of symmetrical nodes in a random phylogenetic tree of large size obeys a limiting Gaussian distribution, in the sense of both central and local limits. The probability that two random phylogenetic trees have the same number of symmetries asymptotically obeys an inverse square-root law. Precise estimates for these problems are obtained by methods of analytic combinatorics, involving bivariate generating functions, singularity analysis, and quasi-powers approximations.
Using the framework of overpartitions, we give a combinatorial interpretation and proof of the q-Bailey identity. We then deduce from this identity a couple of facts about overpartitions. We show that the method of proof of the q-Bailey identity also applies to the (first) q-Gauss identity.
We show that some q-series such as universal mock theta functions are linear sums of theta quotients and mock Jacobi forms of weight 1/2, which become holomorphic parts of real analytic modular forms when they are restricted to torsion points and multiplied by suitable powers of q. We also prove that certain linear sums of q-series are weakly holomorphic modular forms of weight 1/2 due to annihilation of mock Jacobi forms or completion by mock Jacobi forms. As an application, we obtain a relation between the rank and crank of a partition.